Displaying similar documents to “Vertex covering with monochromatic paths.”

Paths through fixed vertices in edge-colored graphs

W. S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos, Zs. Tuza (1994)

Mathématiques et Sciences Humaines

Similarity:

We study the problem of finding an alternating path having given endpoints and passing through a given set of vertices in edge-colored graphs (a path is alternating if any two consecutive edges are in different colors). In particular, we show that this problem in NP-complete for 2-edge-colored graphs. Then we give a polynomial characterization when we restrict ourselves to 2-edge-colored complete graphs. We also investigate on (s,t)-paths through fixed vertices, i.e. paths of length...

Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle

Laura Frigerio, Federico Lastaria, Norma Zagaglia Salvi (2011)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.

Worm Colorings

Wayne Goddard, Kirsti Wash, Honghai Xu (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes....

Rainbow Connection Number of Graphs with Diameter 3

Hengzhe Li, Xueliang Li, Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.