Displaying similar documents to “Convergence for step line processes under summation of random indicators and models of market pricing.”

On random processes as an implicit solution of equations

Petr Lachout (2017)

Kybernetika

Similarity:

Random processes with convenient properties are often employed to model observed data, particularly, coming from economy and finance. We will focus our interest in random processes given implicitly as a solution of a functional equation. For example, random processes AR, ARMA, ARCH, GARCH are belonging in this wide class. Their common feature can be expressed by requirement that stated random process together with incoming innovations must fulfill a functional equation. Functional dependence...

Cluster continuous time random walks

Agnieszka Jurlewicz, Mark M. Meerschaert, Hans-Peter Scheffler (2011)

Studia Mathematica

Similarity:

In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly...

Scaling of a random walk on a supercritical contact process

F. den Hollander, R. S. dos Santos (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the...

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.