The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Colorings and nowhere-zero flows of graphs in terms of Berlekamp's switching game.”

Flows on the join of two graphs

Robert Lukoťka, Edita Rollová (2013)

Mathematica Bohemica

Similarity:

The join of two graphs G and H is a graph formed from disjoint copies of G and H by connecting each vertex of G to each vertex of H . We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero 3 -flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus...

The graph polynomial and the number of proper vertex coloring

Michael Tarsi (1999)

Annales de l'institut Fourier

Similarity:

Alon and Tarsi presented in a previous paper a certain weighted sum over the set of all proper k -colorings of a graph, which can be computed from its graph polynomial. The subject of this paper is another combinatorial interpretation of the same quantity, expressed in terms of the numbers of certain modulo k flows in the graph. Some relations between graph parameters can be obtained by combining these two formulas. For example: The number of proper 3-colorings of a 4-regular graph and...