The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “About the group law for the Jacobi variety of a hyperelliptic curve.”

Siegel’s theorem and the Shafarevich conjecture

Aaron Levin (2012)

Journal de Théorie des Nombres de Bordeaux

Similarity:

It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field k and any finite set of places S of k , one can effectively compute the set of isomorphism classes of hyperelliptic curves over k with good reduction outside S . We show here that an extension of this result to an effective Shafarevich conjecture for of hyperelliptic curves of genus g would imply an effective version of Siegel’s theorem for integral points...

Linearly Normal Curves in P^n

Pasarescu, Ovidiu (2004)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 14H45, 14H50, 14J26. We construct linearly normal curves covering a big range from P^n, n ≥ 6 (Theorems 1.7, 1.9). The problem of existence of such algebraic curves in P^3 has been solved in [4], and extended to P^4 and P^5 in [10]. In both these papers is used the idea appearing in [4] and consisting in adding hyperplane sections to the curves constructed in [6] (for P^3) and [15, 11] (for P^4 and P^5) on some special surfaces. In...