Siegel’s theorem and the Shafarevich conjecture
Aaron Levin[1]
- [1] Department of Mathematics Michigan State University East Lansing, MI 48824
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 3, page 705-727
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLevin, Aaron. "Siegel’s theorem and the Shafarevich conjecture." Journal de Théorie des Nombres de Bordeaux 24.3 (2012): 705-727. <http://eudml.org/doc/251091>.
@article{Levin2012,
abstract = {It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field $k$ and any finite set of places $S$ of $k$, one can effectively compute the set of isomorphism classes of hyperelliptic curves over $k$ with good reduction outside $S$. We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus $g$ would imply an effective version of Siegel’s theorem for integral points on hyperelliptic curves of genus $g$.},
affiliation = {Department of Mathematics Michigan State University East Lansing, MI 48824},
author = {Levin, Aaron},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {hyperelliptic curves; Siegel's theorem; Shafarevich conjecture},
language = {eng},
month = {11},
number = {3},
pages = {705-727},
publisher = {Société Arithmétique de Bordeaux},
title = {Siegel’s theorem and the Shafarevich conjecture},
url = {http://eudml.org/doc/251091},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Levin, Aaron
TI - Siegel’s theorem and the Shafarevich conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/11//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 3
SP - 705
EP - 727
AB - It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field $k$ and any finite set of places $S$ of $k$, one can effectively compute the set of isomorphism classes of hyperelliptic curves over $k$ with good reduction outside $S$. We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus $g$ would imply an effective version of Siegel’s theorem for integral points on hyperelliptic curves of genus $g$.
LA - eng
KW - hyperelliptic curves; Siegel's theorem; Shafarevich conjecture
UR - http://eudml.org/doc/251091
ER -
References
top- A. Baker, Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444. Zbl0174.33803MR234912
- A. Baker, Transcendental number theory. Second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Zbl0715.11032MR1074572
- A. Baker and J. Coates, Integer points on curves of genus 1. Proc. Cambridge Philos. Soc. 67 (1970), 595–602. Zbl0194.07601MR256983
- Yu. Bilu (Belotserkovskiĭ), Effective analysis of a new class of Diophantine equations. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk (1988), no. 6, 34–39, 125. Zbl0669.10037MR984113
- Yu. Bilu, Effective analysis of integral points on algebraic curves. Israel J. Math. 90 (1995), no. 1-3, 235–252. Zbl0840.11028MR1336325
- Yu. Bilu, Quantitative Siegel’s theorem for Galois coverings. Compositio Math. 106 (1997), no. 2, 125–158. Zbl1044.11593MR1457336
- S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. Zbl0705.14001MR1045822
- S. G. Dalaljan, The Prym variety of an unramified double covering of a hyperelliptic curve. Uspehi Mat. Nauk 29 (1974), no. 6(180), 165–166. MR404270
- S. G. Dalaljan, The Prym variety of a two-sheeted covering of a hyperelliptic curve with two branch points. Mat. Sb. (N.S.) 98(140) (1975), no. 2 (10), 255–267, 334. Zbl0322.14013MR399108
- R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 421–443. Zbl0819.12003MR1310635
- J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant. Compositio Math. 79 (1991), no. 2, 169–204. Zbl0746.11020MR1117339
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366. Zbl0588.14026MR718935
- D. Grant, Integer points on curves of genus two and their Jacobians. Trans. Amer. Math. Soc. 344 (1994), no. 1, 79–100. Zbl0828.11032MR1184116
- M. Hindry and J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000, An introduction. Zbl0948.11023MR1745599
- R. von Känel, An effective proof of the hyperelliptic Shafarevich conjecture and applications. PhD thesis, Eidgenössische Technische Hochschule Zürich, 2010.
- H. Kleiman, On the Diophantine equation . J. Reine Angew. Math. 286/287 (1976), 124–131. Zbl0332.10010MR417049
- Q. Liu, Modèles minimaux des courbes de genre deux. J. Reine Angew. Math. 453 (1994), 137–164. Zbl0805.14013MR1285783
- Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète. Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610. Zbl0926.11043MR1363944
- J. R. Merriman, Binary forms and the reduction of curves. 1970, D.Phil, thesis, Oxford University.
- J. R. Merriman and N. P. Smart, Curves of genus with good reduction away from with a rational Weierstrass point. Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 2, 203–214. Zbl0805.14018MR1230127
- D. Mumford, Prym varieties. I. Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350. Zbl0299.14018MR379510
- A. P. Ogg, On pencils of curves of genus two. Topology 5 (1966), 355–362. Zbl0145.17802MR201437
- F. Oort, Hyperelliptic curves over number fields. Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 1974, pp. 211–218. Lecture Notes in Math., Vol. 412. Zbl0299.14017MR354676
- A. N. Parshin, Minimal models of curves of genus . and homomorphisms of abelian varieties defined over a field of finite characteristic. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 67–109. Zbl0246.14007MR316456
- B. Poonen, Computational aspects of curves of genus at least . Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 283–306. Zbl0891.11037MR1446520
- D. Poulakis, Points entiers et modèles des courbes algébriques. Monatsh. Math. 118 (1994), no. 1-2, 111–143. Zbl0811.11023MR1289852
- G. Rémond, Hauteurs thêta et construction de Kodaira. J. Number Theory 78 (1999), no. 2, 287–311. Zbl0947.14016MR1713465
- J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), 492–517. Zbl0172.46101MR236190
- I. R. Shafarevich, Algebraic number fields. Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 163–176. Zbl0133.29303MR202709
- C.L. Siegel, Über einege Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), 41–69.
- J. H. Silverman, Integral points on abelian varieties. Invent. Math. 81 (1985), no. 2, 341–346. Zbl0576.14041MR799270
- J. H. Silverman, Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
- N. P. Smart, -unit equations, binary forms and curves of genus . Proc. London Math. Soc. (3) 75 (1997), no. 2, 271–307. Zbl0885.11031MR1455857
- U. Zannier, Roth’s theorem, integral points and certain ramified covers of . Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, pp. 471–491. Zbl1231.11069MR2508664
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.