Siegel’s theorem and the Shafarevich conjecture

Aaron Levin[1]

  • [1] Department of Mathematics Michigan State University East Lansing, MI 48824

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 3, page 705-727
  • ISSN: 1246-7405

Abstract

top
It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field k and any finite set of places S of k , one can effectively compute the set of isomorphism classes of hyperelliptic curves over k with good reduction outside S . We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus g would imply an effective version of Siegel’s theorem for integral points on hyperelliptic curves of genus g .

How to cite

top

Levin, Aaron. "Siegel’s theorem and the Shafarevich conjecture." Journal de Théorie des Nombres de Bordeaux 24.3 (2012): 705-727. <http://eudml.org/doc/251091>.

@article{Levin2012,
abstract = {It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field $k$ and any finite set of places $S$ of $k$, one can effectively compute the set of isomorphism classes of hyperelliptic curves over $k$ with good reduction outside $S$. We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus $g$ would imply an effective version of Siegel’s theorem for integral points on hyperelliptic curves of genus $g$.},
affiliation = {Department of Mathematics Michigan State University East Lansing, MI 48824},
author = {Levin, Aaron},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {hyperelliptic curves; Siegel's theorem; Shafarevich conjecture},
language = {eng},
month = {11},
number = {3},
pages = {705-727},
publisher = {Société Arithmétique de Bordeaux},
title = {Siegel’s theorem and the Shafarevich conjecture},
url = {http://eudml.org/doc/251091},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Levin, Aaron
TI - Siegel’s theorem and the Shafarevich conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/11//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 3
SP - 705
EP - 727
AB - It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field $k$ and any finite set of places $S$ of $k$, one can effectively compute the set of isomorphism classes of hyperelliptic curves over $k$ with good reduction outside $S$. We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus $g$ would imply an effective version of Siegel’s theorem for integral points on hyperelliptic curves of genus $g$.
LA - eng
KW - hyperelliptic curves; Siegel's theorem; Shafarevich conjecture
UR - http://eudml.org/doc/251091
ER -

References

top
  1. A. Baker, Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444. Zbl0174.33803MR234912
  2. A. Baker, Transcendental number theory. Second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Zbl0715.11032MR1074572
  3. A. Baker and J. Coates, Integer points on curves of genus 1. Proc. Cambridge Philos. Soc. 67 (1970), 595–602. Zbl0194.07601MR256983
  4. Yu. Bilu (Belotserkovskiĭ), Effective analysis of a new class of Diophantine equations. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk (1988), no. 6, 34–39, 125. Zbl0669.10037MR984113
  5. Yu. Bilu, Effective analysis of integral points on algebraic curves. Israel J. Math. 90 (1995), no. 1-3, 235–252. Zbl0840.11028MR1336325
  6. Yu. Bilu, Quantitative Siegel’s theorem for Galois coverings. Compositio Math. 106 (1997), no. 2, 125–158. Zbl1044.11593MR1457336
  7. S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. Zbl0705.14001MR1045822
  8. S. G. Dalaljan, The Prym variety of an unramified double covering of a hyperelliptic curve. Uspehi Mat. Nauk 29 (1974), no. 6(180), 165–166. MR404270
  9. S. G. Dalaljan, The Prym variety of a two-sheeted covering of a hyperelliptic curve with two branch points. Mat. Sb. (N.S.) 98(140) (1975), no. 2 (10), 255–267, 334. Zbl0322.14013MR399108
  10. R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 421–443. Zbl0819.12003MR1310635
  11. J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant. Compositio Math. 79 (1991), no. 2, 169–204. Zbl0746.11020MR1117339
  12. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366. Zbl0588.14026MR718935
  13. D. Grant, Integer points on curves of genus two and their Jacobians. Trans. Amer. Math. Soc. 344 (1994), no. 1, 79–100. Zbl0828.11032MR1184116
  14. M. Hindry and J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000, An introduction. Zbl0948.11023MR1745599
  15. R. von Känel, An effective proof of the hyperelliptic Shafarevich conjecture and applications. PhD thesis, Eidgenössische Technische Hochschule Zürich, 2010. 
  16. H. Kleiman, On the Diophantine equation f ( x , y ) = 0 . J. Reine Angew. Math. 286/287 (1976), 124–131. Zbl0332.10010MR417049
  17. Q. Liu, Modèles minimaux des courbes de genre deux. J. Reine Angew. Math. 453 (1994), 137–164. Zbl0805.14013MR1285783
  18. Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète. Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610. Zbl0926.11043MR1363944
  19. J. R. Merriman, Binary forms and the reduction of curves. 1970, D.Phil, thesis, Oxford University. 
  20. J. R. Merriman and N. P. Smart, Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point. Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 2, 203–214. Zbl0805.14018MR1230127
  21. D. Mumford, Prym varieties. I. Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350. Zbl0299.14018MR379510
  22. A. P. Ogg, On pencils of curves of genus two. Topology 5 (1966), 355–362. Zbl0145.17802MR201437
  23. F. Oort, Hyperelliptic curves over number fields. Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 1974, pp. 211–218. Lecture Notes in Math., Vol. 412. Zbl0299.14017MR354676
  24. A. N. Parshin, Minimal models of curves of genus 2 . and homomorphisms of abelian varieties defined over a field of finite characteristic. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 67–109. Zbl0246.14007MR316456
  25. B. Poonen, Computational aspects of curves of genus at least 2 . Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 283–306. Zbl0891.11037MR1446520
  26. D. Poulakis, Points entiers et modèles des courbes algébriques. Monatsh. Math. 118 (1994), no. 1-2, 111–143. Zbl0811.11023MR1289852
  27. G. Rémond, Hauteurs thêta et construction de Kodaira. J. Number Theory 78 (1999), no. 2, 287–311. Zbl0947.14016MR1713465
  28. J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), 492–517. Zbl0172.46101MR236190
  29. I. R. Shafarevich, Algebraic number fields. Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 163–176. Zbl0133.29303MR202709
  30. C.L. Siegel, Über einege Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), 41–69. 
  31. J. H. Silverman, Integral points on abelian varieties. Invent. Math. 81 (1985), no. 2, 341–346. Zbl0576.14041MR799270
  32. J. H. Silverman, Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
  33. N. P. Smart, S -unit equations, binary forms and curves of genus 2 . Proc. London Math. Soc. (3) 75 (1997), no. 2, 271–307. Zbl0885.11031MR1455857
  34. U. Zannier, Roth’s theorem, integral points and certain ramified covers of 1 . Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, pp. 471–491. Zbl1231.11069MR2508664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.