### The exponential map and differential equations on real Lie groups.

Moskowitz, Martin, Sacksteder, Richard (2003)

Journal of Lie Theory

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Moskowitz, Martin, Sacksteder, Richard (2003)

Journal of Lie Theory

Similarity:

Konstantinov, Alexey L., Rozanov, Pavel K. (2005)

Journal of Lie Theory

Similarity:

Ciccoli, Nicola, Guerra, Lucio (2003)

Journal of Lie Theory

Similarity:

Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P. (2005)

Homology, Homotopy and Applications

Similarity:

Moody, Robert V., Patera, Jiri (2006)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Kurdiani, R., Pirashvili, T. (2002)

Journal of Lie Theory

Similarity:

Díaz, Rafael, Pariguan, Eddy (2005)

Boletín de la Asociación Matemática Venezolana

Similarity:

Leslie, Joshua (2003)

Journal of Lie Theory

Similarity:

Molaei, M.R., Farhangdoost, M.R. (2009)

Balkan Journal of Geometry and its Applications (BJGA)

Similarity:

Huang, Huale (2003)

Journal of Lie Theory

Similarity:

Grozman, P., Leites, D., Poletaeva, E. (2002)

Homology, Homotopy and Applications

Similarity:

Jacek Dziubański, Andrzej Hulanicki, Joe Jenkins (1995)

Colloquium Mathematicae

Similarity:

The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on ${\mathbb{R}}^{n}$ with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.