Multiplicity-Free Permuation Representations of Finite Linear Groups.
Jan Saxl, N.F.J. Inglis, M.W. Liebeck (1986)
Mathematische Zeitschrift
Similarity:
Jan Saxl, N.F.J. Inglis, M.W. Liebeck (1986)
Mathematische Zeitschrift
Similarity:
P. Cameron, P.M. Neumann, D.N. Teague (1982)
Mathematische Zeitschrift
Similarity:
Peter M. Neumann, Jan Saxl (1979)
Mathematische Zeitschrift
Similarity:
Pedro Lopes (2009)
Open Mathematics
Similarity:
In this article we look into characterizing primitive groups in the following way. Given a primitive group we single out a subset of its generators such that these generators alone (the so-called primitive generators) imply the group is primitive. The remaining generators ensure transitivity or comply with specific features of the group. We show that, other than the symmetric and alternating groups, there are infinitely many primitive groups with one primitive generator each. These primitive...
Leonard L. Scott, David M. Goldschmidt (1978)
Mathematische Zeitschrift
Similarity:
Warren J. Wong (1967)
Mathematische Zeitschrift
Similarity:
David M. Evans, Todor Tsankov (2016)
Fundamenta Mathematicae
Similarity:
We show that if G is a non-archimedean, Roelcke precompact Polish group, then G has Kazhdan's property (T). Moreover, if G has a smallest open subgroup of finite index, then G has a finite Kazhdan set. Examples of such G include automorphism groups of countable ω-categorical structures, that is, the closed, oligomorphic permutation groups on a countable set. The proof uses work of the second author on the unitary representations of such groups, together with a separation result for infinite...
William L. Quirin (1971)
Mathematische Zeitschrift
Similarity:
William L. Quirin (1971)
Mathematische Zeitschrift
Similarity:
Peter M. Neumann, Jan Saxl (1976)
Mathematische Zeitschrift
Similarity:
Б.А. Погорелов (1980)
Algebra i Logika
Similarity:
Б.А Погорелов (1980)
Algebra i Logika
Similarity:
Peter J. Cameron (1972)
Mathematische Zeitschrift
Similarity: