Displaying similar documents to “An invariant of quadratic forms over schemes.”

Dualization in algebraic K-theory and the invariant e¹ of quadratic forms over schemes

Marek Szyjewski (2011)

Fundamenta Mathematicae

Similarity:

In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰). Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are: ...

Birational geometry of quadrics

Burt Totaro (2009)

Bulletin de la Société Mathématique de France

Similarity:

We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension...