Displaying similar documents to “Analytical solution for the time-fractional telegraph equation.”

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 35R11, 42A38, 26A33, 33E12 The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed...

A detailed analysis for the fundamental solution of fractional vibration equation

Li-Li Liu, Jun-Sheng Duan (2015)

Open Mathematics

Similarity:

In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...

α-Mellin Transform and One of Its Applications

Nikolova, Yanka (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45 We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we have introduced the definition of the α-Mellin transform and some of its basic properties. Some examples of special cases are provided. Its operational properties as Theorem 1, Theorem 2 (Convolution theorem) and Theorem...

Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

Nikolova, Yanka, Boyadjiev, Lyubomir (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12. The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.