Displaying similar documents to “Rigidity of smooth one-sided Bernoulli endomorphisms.”

Partition sensitivity for measurable maps

C. A. Morales (2013)

Mathematica Bohemica

Similarity:

We study countable partitions for measurable maps on measure spaces such that, for every point x , the set of points with the same itinerary as that of x is negligible. We prove in nonatomic probability spaces that every strong generator (Parry, W., Aperiodic transformations and generators, J. London Math. Soc. 43 (1968), 191–194) satisfies this property (but not conversely). In addition, measurable maps carrying partitions with this property are aperiodic and their corresponding spaces...

Completely mixing maps without limit measure

Gerhard Keller (2004)

Colloquium Mathematicae

Similarity:

We combine some results from the literature to give examples of completely mixing interval maps without limit measure.

Most expanding maps have no absolutely continuous invariant measure

Anthony Quas (1999)

Studia Mathematica

Similarity:

We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic C 1 expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for C 2 or C 1 + ε expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.

Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations

Franz Hofbauer (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights...