Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 2, page 221-243
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHofbauer, Franz. "Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 221-243. <http://eudml.org/doc/32495>.
@article{Hofbauer2009,
abstract = {We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively.},
author = {Hofbauer, Franz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure; Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure},
language = {eng},
number = {2},
pages = {221-243},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations},
url = {http://eudml.org/doc/32495},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Hofbauer, Franz
TI - Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 221
EP - 243
AB - We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively.
LA - eng
KW - Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure; Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure
UR - http://eudml.org/doc/32495
ER -
References
top- Afraimovich V., 10.1063/1.166237, Chaos 7 (1997), 12--20. (1997) MR1439803DOI10.1063/1.166237
- Afraimovich V., Chazottes J.-R., Saussol B., Pointwise dimension for Poincaré recurrences associated with maps and special flows, Discrete Contin. Dyn. Syst. A 9 (2003), 263--280. (2003) MR1952373
- Billingsley P., Ergodic Theory and Information, Krieger New York (1978). (1978) MR0524567
- Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470 Springer Berlin-Heidelberg-New York (1975). (1975) Zbl0308.28010MR2423393
- Cutler C., 10.4153/CJM-1986-071-9, Canad. J. Math. 38 (1986), 1459--1484. (1986) MR0873419DOI10.4153/CJM-1986-071-9
- Hofbauer F., 10.1007/BF02760884, Israel J. Math. 34 (1979), 213--237. (1979) MR0570882DOI10.1007/BF02760884
- Hofbauer F., 10.1007/BF02761854, Israel J. Math. 38 (1981), 107--115. (1981) MR0599481DOI10.1007/BF02761854
- Hofbauer F., 10.1007/BF00334191, Probab. Theory Relat. Fields 72 (1986), 359--386. (1986) Zbl0578.60069MR0843500DOI10.1007/BF00334191
- Hofbauer F., An inequality for the Lyapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel, J.-P. Eckmann, Eds., Lecture Notes in Mathematics, 1486, Springer, Berlin, 1991, pp. 227--231. MR1178961
- Hofbauer F., 10.1112/jlms/s2-47.1.142, J. London Math. Soc. 47 (1993), 142--156. (1993) Zbl0725.54031MR1200984DOI10.1112/jlms/s2-47.1.142
- Hofbauer F., The recurrence dimension for piecewise monotonic maps of the interval, Ann. Scuola Norm. Super. Pisa Cl. Sci. 4 (2005), 439--449. (2005) Zbl1170.37316MR2185864
- Hofbauer F., Keller G., 10.1007/BF01215004, Math. Z. 180 (1982), 119--140. (1982) Zbl0485.28016MR0656227DOI10.1007/BF01215004
- Hofbauer F., Keller G., Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems 2 (1982), 23--43. (1982) Zbl0499.28012MR0684242
- Hofbauer F., Raith P., 10.4153/CMB-1992-013-x, Canad. Math. Bull. 35 (1992), 84--98. (1992) Zbl0701.28005MR1157469DOI10.4153/CMB-1992-013-x
- Hofbauer F., Raith P., Steinberger T., 10.4064/fm176-3-2, Fund. Math. 176 (2003), 209--232. (2003) Zbl1051.37011MR1992820DOI10.4064/fm176-3-2
- Hofbauer F., Urbański M., 10.1090/S0002-9947-1994-1232188-9, Trans. Amer. Math. Soc. 343 (1994), 659--673. (1994) MR1232188DOI10.1090/S0002-9947-1994-1232188-9
- Keller G., Extended bounded variation and application to piecewise monotonic transformations, Probab. Theory Relat. Fields 69 (1985), 461--478. (1985) MR0787608
- Ledrappier F., Principe variationnel et systemes dynamiques symboliques, Probab. Theory Relat. Fields 30 (1974), 185--202. (1974) Zbl0276.93004MR0404584
- Mattila P., Geometry of Sets and Measures in Euclidean space, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. MR1333890
- Olsen L., 10.1006/aima.1995.1066, Adv. Math. 116 (1995), 82--196. (1995) Zbl0841.28012MR1361481DOI10.1006/aima.1995.1066
- Pesin Ya., Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics University of Chicago Press Chicago (1997). (1997) MR1489237
- Rychlik M., Bounded variation and invariant measures, Studia Math. 76 (1983), 69--80. (1983) Zbl0575.28011MR0728198
- Saussol B., Troubetzkoy S., Vaienti S., 10.1023/A:1013710422755, J. Statist. Phys. 106 (2002), 623--634. (2002) Zbl1138.37300MR1884547DOI10.1023/A:1013710422755
- Saussol B., Troubetzkoy S., Vaienti S., Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189--203. (2003) Zbl1083.37504MR1996808
- Steinberger T., Local dimension of ergodic measures for two-dimensional Lorenz transformations, Ergodic Theory Dynam. Systems 20 (2000), 911--923. (2000) Zbl0965.37011MR1764935
- Walters P., 10.1007/BF01174569, Math. Z. 159 (1978), 65--88. (1978) Zbl0364.28016MR0466492DOI10.1007/BF01174569
- Walters P., 10.1007/978-1-4612-5775-2, Graduate Texts in Mathematics, 79, Springer, New York, 1982. Zbl0958.28011MR0648108DOI10.1007/978-1-4612-5775-2
- Young L.-S., Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109--124. (1982) Zbl0523.58024MR0684248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.