Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations

Franz Hofbauer

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 2, page 221-243
  • ISSN: 0010-2628

Abstract

top
We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively.

How to cite

top

Hofbauer, Franz. "Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 221-243. <http://eudml.org/doc/32495>.

@article{Hofbauer2009,
abstract = {We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively.},
author = {Hofbauer, Franz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure; Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure},
language = {eng},
number = {2},
pages = {221-243},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations},
url = {http://eudml.org/doc/32495},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Hofbauer, Franz
TI - Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 221
EP - 243
AB - We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively.
LA - eng
KW - Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure; Hausdorff dimension; packing dimension; Lorenz transformation; ergodic measure
UR - http://eudml.org/doc/32495
ER -

References

top
  1. Afraimovich V., 10.1063/1.166237, Chaos 7 (1997), 12--20. (1997) MR1439803DOI10.1063/1.166237
  2. Afraimovich V., Chazottes J.-R., Saussol B., Pointwise dimension for Poincaré recurrences associated with maps and special flows, Discrete Contin. Dyn. Syst. A 9 (2003), 263--280. (2003) MR1952373
  3. Billingsley P., Ergodic Theory and Information, Krieger New York (1978). (1978) MR0524567
  4. Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470 Springer Berlin-Heidelberg-New York (1975). (1975) Zbl0308.28010MR2423393
  5. Cutler C., 10.4153/CJM-1986-071-9, Canad. J. Math. 38 (1986), 1459--1484. (1986) MR0873419DOI10.4153/CJM-1986-071-9
  6. Hofbauer F., 10.1007/BF02760884, Israel J. Math. 34 (1979), 213--237. (1979) MR0570882DOI10.1007/BF02760884
  7. Hofbauer F., 10.1007/BF02761854, Israel J. Math. 38 (1981), 107--115. (1981) MR0599481DOI10.1007/BF02761854
  8. Hofbauer F., 10.1007/BF00334191, Probab. Theory Relat. Fields 72 (1986), 359--386. (1986) Zbl0578.60069MR0843500DOI10.1007/BF00334191
  9. Hofbauer F., An inequality for the Lyapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel, J.-P. Eckmann, Eds., Lecture Notes in Mathematics, 1486, Springer, Berlin, 1991, pp. 227--231. MR1178961
  10. Hofbauer F., 10.1112/jlms/s2-47.1.142, J. London Math. Soc. 47 (1993), 142--156. (1993) Zbl0725.54031MR1200984DOI10.1112/jlms/s2-47.1.142
  11. Hofbauer F., The recurrence dimension for piecewise monotonic maps of the interval, Ann. Scuola Norm. Super. Pisa Cl. Sci. 4 (2005), 439--449. (2005) Zbl1170.37316MR2185864
  12. Hofbauer F., Keller G., 10.1007/BF01215004, Math. Z. 180 (1982), 119--140. (1982) Zbl0485.28016MR0656227DOI10.1007/BF01215004
  13. Hofbauer F., Keller G., Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems 2 (1982), 23--43. (1982) Zbl0499.28012MR0684242
  14. Hofbauer F., Raith P., 10.4153/CMB-1992-013-x, Canad. Math. Bull. 35 (1992), 84--98. (1992) Zbl0701.28005MR1157469DOI10.4153/CMB-1992-013-x
  15. Hofbauer F., Raith P., Steinberger T., 10.4064/fm176-3-2, Fund. Math. 176 (2003), 209--232. (2003) Zbl1051.37011MR1992820DOI10.4064/fm176-3-2
  16. Hofbauer F., Urbański M., 10.1090/S0002-9947-1994-1232188-9, Trans. Amer. Math. Soc. 343 (1994), 659--673. (1994) MR1232188DOI10.1090/S0002-9947-1994-1232188-9
  17. Keller G., Extended bounded variation and application to piecewise monotonic transformations, Probab. Theory Relat. Fields 69 (1985), 461--478. (1985) MR0787608
  18. Ledrappier F., Principe variationnel et systemes dynamiques symboliques, Probab. Theory Relat. Fields 30 (1974), 185--202. (1974) Zbl0276.93004MR0404584
  19. Mattila P., Geometry of Sets and Measures in Euclidean space, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. MR1333890
  20. Olsen L., 10.1006/aima.1995.1066, Adv. Math. 116 (1995), 82--196. (1995) Zbl0841.28012MR1361481DOI10.1006/aima.1995.1066
  21. Pesin Ya., Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics University of Chicago Press Chicago (1997). (1997) MR1489237
  22. Rychlik M., Bounded variation and invariant measures, Studia Math. 76 (1983), 69--80. (1983) Zbl0575.28011MR0728198
  23. Saussol B., Troubetzkoy S., Vaienti S., 10.1023/A:1013710422755, J. Statist. Phys. 106 (2002), 623--634. (2002) Zbl1138.37300MR1884547DOI10.1023/A:1013710422755
  24. Saussol B., Troubetzkoy S., Vaienti S., Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189--203. (2003) Zbl1083.37504MR1996808
  25. Steinberger T., Local dimension of ergodic measures for two-dimensional Lorenz transformations, Ergodic Theory Dynam. Systems 20 (2000), 911--923. (2000) Zbl0965.37011MR1764935
  26. Walters P., 10.1007/BF01174569, Math. Z. 159 (1978), 65--88. (1978) Zbl0364.28016MR0466492DOI10.1007/BF01174569
  27. Walters P., 10.1007/978-1-4612-5775-2, Graduate Texts in Mathematics, 79, Springer, New York, 1982. Zbl0958.28011MR0648108DOI10.1007/978-1-4612-5775-2
  28. Young L.-S., Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109--124. (1982) Zbl0523.58024MR0684248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.