Displaying similar documents to “Partitioning inverse Monte Carlo iterative algorithm for finding the three smallest eigenpairs of generalized eigenvalue problem.”

A parallel block Lanczos algorithm and its implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers

Mario Guarracino, Francesca Perla, Paolo Zanetti (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC...

Inversion of square matrices in processors with limited calculation abillities

Krzysztof Janiszowski (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

An iterative inversion algorithm for a class of square matrices is derived and tested. The inverted matrix can be defined over both real and complex fields. This algorithm is based only on the operations of addition and multiplication. The numerics of the algorithm can cope with a short number representation and therefore can be very useful in the case of processors with limited possibilities, like different neuro-computers and accelerator cards. The quality of inversion can be traced...

Variations on the Gram-Schmidt and the Huang algorithms for linear systems: A numerical study

Emilio Spedicato, Maria Teresa Vespucci (1993)

Applications of Mathematics

Similarity:

In this paper we compare the numerical performance on a set of ill conditioned problems of several algorithms for linear systems based upon the explicit QR factorization and the implicit LQ factorization associated with the Huang and the modified Huang algorithms in the ABS class. The results indicate that the modified Huang algorithm is generally more accurate than the Huang algorithm and competitive with commercial codes based upon the QR factorization with Householder of Givens reflections....

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences and synchronization-reducing variants of BICG and QMR

Stefan Feuerriegel, H. Martin Bücker (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The Lanczos algorithm is among the most frequently used iterative techniques for computing a few dominant eigenvalues of a large sparse non-symmetric matrix. At the same time, it serves as a building block within biconjugate gradient (BiCG) and quasi-minimal residual (QMR) methods for solving large sparse non-symmetric systems of linear equations. It is well known that, when implemented on distributed-memory computers with a huge number of processes, the synchronization time spent on...