Displaying similar documents to “General decay stability for stochastic functional differential equations with infinite delay.”

Finite-time topological identification of complex network with time delay and stochastic disturbance

Yufeng Qian (2021)

Kybernetika

Similarity:

The topology identification issue of complex stochastic network with delay and stochastic disturbance is mainly introduced in this paper. It is known the time delay and stochastic disturbance are ubiquitous in real network, and they will impair the identification of network topology, and the topology capable of identifying the network within specific time is desired on the other hand. Based on these discussions, the finite-time identification method is proposed to solve similar issues...

Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick Florchinger (2022)

Kybernetika

Similarity:

The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted...

Dynamical behavior for a stochastic two-species competitive model

Changjin Xu, Maoxin Liao (2017)

Open Mathematics

Similarity:

This paper deals with a stochastic two-species competitive model. Some very verifiable criteria on the global stability of the positive equilibrium of the deterministic system are established. An example with its computer simulations is given to illustrate our main theoretical findings.

An averaging principle for stochastic evolution equations. II.

Bohdan Maslowski, Jan Seidler, Ivo Vrkoč (1991)

Mathematica Bohemica

Similarity:

In the present paper integral continuity theorems for solutions of stochastic evolution equations of parabolic type on unbounded time intervals are established. For this purpose, the asymptotic stability of stochastic partial differential equations is investigated, the results obtained being of independent interest. Stochastic evolution equations are treated as equations in Hilbert spaces within the framework of the semigroup approach.