Displaying similar documents to “Enclosing roots of polynomial equations and their applications to iterative processes.”

A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence

Kyurkchiev, Nikolay, Iliev, Anton (2009)

Serdica Journal of Computing

Similarity:

This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv. In this paper we give methodological survey of “contemporary methods” for solving the nonlinear equation f(x) = 0. The reason for this review is that many authors in present days rediscovered such classical methods. Here we develop one methodological schema for constructing nonstationary methods with a preliminary chosen speed of convergence. ...

Extending the applicability of Newton's method using nondiscrete induction

Ioannis K. Argyros, Saïd Hilout (2013)

Czechoslovak Mathematical Journal

Similarity:

We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra,...

Inexact Newton methods and recurrent functions

Ioannis K. Argyros, Saïd Hilout (2010)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...

A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses

Ioannis K. Argyros (2005)

Applicationes Mathematicae

Similarity:

The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...

Local convergence of inexact Newton methods under affine invariant conditions and hypotheses on the second Fréchet derivative

Ioannis Argyros (1999)

Applicationes Mathematicae

Similarity:

We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...