The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Global well-posedness for certain density-dependent modified-Leray- α models.”

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

On the blow up criterion for the 2-D compressible Navier-Stokes equations

Lingyu Jiang, Yidong Wang (2010)

Czechoslovak Mathematical Journal

Similarity:

Motivated by [10], we prove that the upper bound of the density function ρ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.

Steady compressible Navier-Stokes-Fourier system in two space dimensions

Petra Pecharová, Milan Pokorný (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier-Stokes-Fourier system. We assume that the pressure is given by the constitutive equation p ( ρ , θ ) ρ γ + ρ θ , where ρ is the density and θ is the temperature. For γ > 2 , we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness...