The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Natural tensor fields of type ( 0 , 2 ) on the tangent and cotangent bundles of a Fedosov manifold.”

The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Plaszczyk (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...

Canonical tensor fields of type (p,0) on Weil bundles

Jacek Dębecki (2006)

Annales Polonici Mathematici

Similarity:

We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz M. Mikulski (2015)

Annales UMCS, Mathematica

Similarity:

If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian...