A global characterization of jet bundles of -velocities and covelocities
Manuel De León, Eugenic Merino, José A. Oubiña, Modesto Salgado (1995)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Manuel De León, Eugenic Merino, José A. Oubiña, Modesto Salgado (1995)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Ivan Kolár (1996)
Extracta Mathematicae
Similarity:
We present a survey of some recent results about natural operations on the r-th order tangent bundle and similar objects.
W. H. Greub, S. Halperin (1975)
Collectanea Mathematica
Similarity:
Das, Lovejoy S., Nivas, Ram, Nath Pathak, Virendra (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Mariusz Plaszczyk (2015)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...
Jacek Dębecki (2006)
Annales Polonici Mathematici
Similarity:
We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.
Jan Kurek, Włodzimierz M. Mikulski (2015)
Annales UMCS, Mathematica
Similarity:
If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian...
Т.А. Пантелеева (1986)
Trudy Geometriceskogo Seminara
Similarity: