A global characterization of jet bundles of -velocities and covelocities
Manuel De León, Eugenic Merino, José A. Oubiña, Modesto Salgado (1995)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Manuel De León, Eugenic Merino, José A. Oubiña, Modesto Salgado (1995)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Ivan Kolár (1996)
Extracta Mathematicae
Similarity:
We present a survey of some recent results about natural operations on the r-th order tangent bundle and similar objects.
W. H. Greub, S. Halperin (1975)
Collectanea Mathematica
Similarity:
Das, Lovejoy S., Nivas, Ram, Nath Pathak, Virendra (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Mariusz Plaszczyk (2015)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...
Jacek Dębecki (2006)
Annales Polonici Mathematici
Similarity:
We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.
Jan Kurek, Włodzimierz M. Mikulski (2015)
Annales UMCS, Mathematica
Similarity:
If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian...
Т.А. Пантелеева (1986)
Trudy Geometriceskogo Seminara
Similarity: