Displaying similar documents to “Assessing local turbulence strength from a time series.”

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations...

Time domain computational modelling of 1D arterial networks in monochorionic placentas

Victoria E. Franke, Kim H. Parker, Ling Y. Wee, Nicholas M. Fisk, Spencer J. Sherwin (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/ h p element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal...

The mathematical theory of low Mach number flows

Steven Schochet (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.

Recent developments on wall-bounded turbulence.

Javier Jiménez (2007)

RACSAM

Similarity:

The study of turbulence near walls has experienced a renaissance in the last decade, in part because of the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are now fairly well understood. They are essentially independent of the outer flow, and there is a family of numerically-exact nonlinear structures that predict well many of the best-known characteristics of the wall layer, such as the intensity and the spectra of the velocity fluctuations,...