Displaying similar documents to “On a theorem of Myshkis-Tsalyuk.”

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

Similarity:

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

Existence results for delay second order differential inclusions

Dalila Azzam-Laouir, Tahar Haddad (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, some fixed point principle is applied to prove the existence of solutions for delay second order differential inclusions with three-point boundary conditions in the context of a separable Banach space. A topological property of the solutions set is also established.

Delay differential systems with time-varying delay: new directions for stability theory

James Louisell (2001)

Kybernetika

Similarity:

In this paper we give an example of Markus–Yamabe instability in a constant coefficient delay differential equation with time-varying delay. For all values of the range of the delay function, the characteristic function of the associated autonomous delay equation is exponentially stable. Still, the fundamental solution of the time-varying system is unbounded. We also present a modified example having absolutely continuous delay function, easily calculating the average variation of the...

Global existence and energy decay of solutions to a Bresse system with delay terms

Abbes Benaissa, Mostefa Miloudi, Mokhtar Mokhtari (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.