Global existence results for second order neutral functional differential equation with state-dependent delay

Mouffak Benchohra; Imene Medjadj

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 169-183
  • ISSN: 0010-2628

Abstract

top
Our aim in this work is to provide sufficient conditions for the existence of global solutions of second order neutral functional differential equation with state-dependent delay. We use the semigroup theory and Schauder's fixed point theorem.

How to cite

top

Benchohra, Mouffak, and Medjadj, Imene. "Global existence results for second order neutral functional differential equation with state-dependent delay." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 169-183. <http://eudml.org/doc/280139>.

@article{Benchohra2016,
abstract = {Our aim in this work is to provide sufficient conditions for the existence of global solutions of second order neutral functional differential equation with state-dependent delay. We use the semigroup theory and Schauder's fixed point theorem.},
author = {Benchohra, Mouffak, Medjadj, Imene},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {neutral functional differential equation of second order; mild solution; infinite delay; state-dependent delay fixed point; semigroup theory; cosine function},
language = {eng},
number = {2},
pages = {169-183},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Global existence results for second order neutral functional differential equation with state-dependent delay},
url = {http://eudml.org/doc/280139},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Benchohra, Mouffak
AU - Medjadj, Imene
TI - Global existence results for second order neutral functional differential equation with state-dependent delay
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 169
EP - 183
AB - Our aim in this work is to provide sufficient conditions for the existence of global solutions of second order neutral functional differential equation with state-dependent delay. We use the semigroup theory and Schauder's fixed point theorem.
LA - eng
KW - neutral functional differential equation of second order; mild solution; infinite delay; state-dependent delay fixed point; semigroup theory; cosine function
UR - http://eudml.org/doc/280139
ER -

References

top
  1. Abbas S., Benchohra M., Advanced Functional Evolution Equations and Inclusions, Springer, Cham, 2015. Zbl1326.34012MR3381102
  2. Aiello W.G., Freedman H.I., Wu J., 10.1137/0152048, SIAM J. Appl. Math. 52 (1992), 855–869. MR1163810DOI10.1137/0152048
  3. Anguraj A., Arjunan M.M. Hernández E., 10.1080/00036810701354995, Appl. Anal. 86 (2007), 861–872. MR2355543DOI10.1080/00036810701354995
  4. Balachandran K., Anthoni S.M., Existence of solutions of second order neutral functional differential equations, Tamkang J. Math. 30 (1999), 299–309. MR1729273
  5. Bartha M., Periodic solutions for differential equations with state-dependent delay and positive feedback, Nonlinear Anal. TMA 53 (2003), 839–857. Zbl1028.34062MR1971032
  6. Benchohra M., Henderson J., Ntouyas S.K., 10.1006/jmaa.2001.7663, J. Math. Anal. Appl. 263 (2001), 763–780. Zbl0998.34064MR1866239DOI10.1006/jmaa.2001.7663
  7. Benchohra M., Medjadj I., 10.1007/s12591-014-0210-1, Differ. Equ. Dyn. Syst., 24 (2016), 189–200. MR3486011DOI10.1007/s12591-014-0210-1
  8. Benchohra M., Medjadj I., Nieto J.J., Prakash P., Global existence for functional differential equations with state-dependent delay, J. Funct. Spaces Appl. 2013, Article ID 863561, 7 pages. Zbl1292.34061MR3132675
  9. Cao Y., Fan J., Gard T.C., The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. TMA 19 (1992), 95–105. Zbl0777.92014MR1174461
  10. Corduneanu C., Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973. Zbl0273.45001MR0358245
  11. Hartung F., Parameter estimation by quasilinearization in functional differential equations state-dependent delays: a numerical study, Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. TMA 47 (2001), 4557–4566. MR1975850
  12. Domoshnitsky A., Drakhlin M., Litsyn E., On equations with delay depending on solution, Nonlinear Anal. TMA 49 (2002), 689–701. Zbl1012.34066MR1894304
  13. Hartung F., Turi J., Identification of parameters in delay equations with state-dependent lays, Nonlinear Anal. TMA 29 (1997), 1303–1318. MR1472420
  14. Hartung F., Herdman T.L., Turi J., Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA 39 (2000), 305–325. Zbl0955.34067MR1722822
  15. Fattorini H.O., Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108, North-Holland, Amsterdam, 1985. Zbl0564.34063MR0797071
  16. Granas A., Dugundji J., Fixed Point Theory, Springer, New York, 2003. Zbl1025.47002MR1987179
  17. Hale J., Kato J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11–41. Zbl0383.34055MR0492721
  18. Hernández E., Existence of solutions for a second order abstract functional differential equation with state-dependent delay, Electron. J. Differential Equations 21 (2007), 1–10. Zbl1113.47061
  19. Hernández E., McKibben M., 10.1016/j.amc.2006.07.103, Appl. Math. Comput. 186 (2007), 294–301. Zbl1119.35106MR2316515DOI10.1016/j.amc.2006.07.103
  20. Hernández E., Pierri M., Uniáo G., 10.1016/j.camwa.2006.03.022, Comput. Math. Appl. 52 (2006), 411–420. DOI10.1016/j.camwa.2006.03.022
  21. Hernández E., Sakthivel R., Tanaka S., Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations 28 (2008), 1–11. Zbl1133.35101MR2390434
  22. Hino Y., Murakami S., Naito T., Functional Differential Equations with Unbounded Delay, Springer, Berlin, 1991. MR1122588
  23. Kisynski J., 10.4064/sm-44-1-93-105, Studia Math. 49 (1972), 93–105. MR0312328DOI10.4064/sm-44-1-93-105
  24. Kozak M., A fundamental solution of a second order differential equation in Banach space, Univ. Iagel. Acta Math. 32 (1995), 275–289. MR1345144
  25. Li W.-S., Chang Y.-K., Nieto J.J., 10.1016/j.mcm.2008.12.010, Math. Comput. Modelling 49 (2009), 1920–1927. MR2532098DOI10.1016/j.mcm.2008.12.010
  26. Ntouyas S.K., Global existence results for certain second order delay integrodifferential equations with nonlocal conditions, Dynam. Systems Appl. 7 (1998), 415–425. Zbl0914.35148MR1639604
  27. Ntouyas S.K., Tsamatos P.Ch., 10.1080/00036819708840609, Appl. Anal. 67 (1997), 245–257. Zbl0906.35110MR1614061DOI10.1080/00036819708840609
  28. Rezounenko A., 10.1016/j.jmaa.2006.03.049, J. Math. Anal. Appl. 326 (2007), 1031–1045. Zbl1178.35370MR2280961DOI10.1016/j.jmaa.2006.03.049
  29. Rezounenko A., Wu J., 10.1016/j.cam.2005.01.047, J. Comput. Appl. Math. 190 (2006), 99–113. MR2209496DOI10.1016/j.cam.2005.01.047
  30. Si J.-G., Wang X.P., 10.1007/BF03322694, Results Math. 39 (2001), 345–352. MR1834580DOI10.1007/BF03322694
  31. Travis C.C., Webb G.F., Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math. 3 (1977), 555–567. Zbl0386.47024MR0500288
  32. Travis C.C., Webb G.F., 10.1007/BF01902205, Acta Math. Acad. Sci. Hungar. 32 (1978), 76–96. Zbl0388.34039MR0499581DOI10.1007/BF01902205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.