Parameter spaces for quadrics
Anders Thorup (1996)
Banach Center Publications
Similarity:
The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.
Anders Thorup (1996)
Banach Center Publications
Similarity:
The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.
Coffman, Adam (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Biondi, P., Lo Re, P.M.L., Storme, L. (2007)
Beiträge zur Algebra und Geometrie
Similarity:
Havlicek, Hans, Riesinger, Rolf (2006)
Beiträge zur Algebra und Geometrie
Similarity:
Kostadin Trenčevski (2012)
Kragujevac Journal of Mathematics
Similarity:
R. Powers, T. Riedel, P. Sahoo (1993)
Colloquium Mathematicae
Similarity:
Odehnal, Boris, Pottmann, Helmut, Wallner, Johannes (2006)
Beiträge zur Algebra und Geometrie
Similarity:
Zazashvili, Sh. (1994)
Georgian Mathematical Journal
Similarity:
Dress, Andreas, Wenzel, Walter (1989)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Alessandro Arsie (2005)
Revista Matemática Complutense
Similarity:
Quite recently, Alexeev and Nakamura proved that if Y is a stable semi-Abelic variety (SSAV) of dimension g equipped with the ample line bundle O(1), which deforms to a principally polarized Abelian variety, then O(n) is very ample as soon as n ≥ 2g + 1, that is n ≥ 5 in the case of surfaces. Here it is proved, via elementary methods of projective geometry, that in the case of surfaces this bound can be improved to n ≥ 3.
Mochida, D. K. H., Romero-Fuster, M. C., Ruas, M. A. S. (2001)
Beiträge zur Algebra und Geometrie
Similarity: