Parameter spaces for quadrics

Anders Thorup

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 199-216
  • ISSN: 0137-6934

Abstract

top
The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.

How to cite

top

Thorup, Anders. "Parameter spaces for quadrics." Banach Center Publications 36.1 (1996): 199-216. <http://eudml.org/doc/208578>.

@article{Thorup1996,
abstract = {The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.},
author = {Thorup, Anders},
journal = {Banach Center Publications},
keywords = {number of quadrics; intersection theory; Schubert numbers},
language = {eng},
number = {1},
pages = {199-216},
title = {Parameter spaces for quadrics},
url = {http://eudml.org/doc/208578},
volume = {36},
year = {1996},
}

TY - JOUR
AU - Thorup, Anders
TI - Parameter spaces for quadrics
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 199
EP - 216
AB - The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.
LA - eng
KW - number of quadrics; intersection theory; Schubert numbers
UR - http://eudml.org/doc/208578
ER -

References

top
  1. [1] M. Brion, Groupe de Picard et nombres charactéristique des varietés sphériques, Duke Math. J. 58 (1989), 397-424. Zbl0701.14052
  2. [2] E. Casas-Alvero and S. Xambó-Descamps, The enumerative theory of conics after Halphen, Lecture Notes in Math. 1196, Springer-Verlag, 1986. Zbl0626.14037
  3. [3] C. De Concini, P. Gianni and C. Procesi, Computation of new Schubert tables for quadrics and projectivities, in: Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, 1985, 515-523. 
  4. [4] C. De Concini and C. Procesi, Complete symmetric varieties, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer-Verlag, Berlin, 1983, 1-44. 
  5. [5] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), Band 2, Springer-Verlag, Berlin, 1984. Zbl0541.14005
  6. [6] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Memorie Reale Istituto Lombardo 19 (1903), 155-194. Zbl34.0615.01
  7. [7] G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. Zbl0295.14023
  8. [8] S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in: Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math. 28, 1976, 445-482. Zbl0336.14001
  9. [9] S. Kleiman, Chasles's enumerative theory of conics: A historical introduction, in: Studies in Algebraic Geometry (A. Seidenberg, ed.), MAA Stud. Math. 20, 1980, 117-138. Zbl0444.14001
  10. [10] S. Kleiman and A. Thorup, Intersection theory and enumerative geometry. A decade in review, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 332-338. 
  11. [11] D. Laksov, Notes on the evolution of complete correlations, in: Enumerative and Classical Algebraic Geometry, Proceedings Nice 1981 (Le Barz and Hervier, eds.), Progr. Math. 24, Birkhäuser, 1982, 107-132. 
  12. [12] D. Laksov, Completed quadrics and linear maps, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 371-387. 
  13. [13] D. Laksov, Complete linear maps, Ark. Mat. 26 (1988), 231-263. Zbl0681.14034
  14. [14] D. Laksov, A. Lascoux, and A. Thorup, On Giambelli's theorem on complete correlations, Acta Math. 162 (1989), 143-199. Zbl0695.14023
  15. [15] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454. Zbl0687.14043
  16. [16] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative Algebraic Geometry, Copenhagen, 1989 (S. L. Kleiman and A. Thorup, eds.), Contemp. Math. 123 (1991), 199-211. Zbl0759.14043
  17. [17] H. Schubert, Anzahlbestimmungen für lineare Räume beliebiger Dimension, Acta Math. 8 (1886), 97-118. 
  18. [18] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206. Zbl25.1038.03
  19. [19] H. Schubert, Correlative Verwandtschaft in n Dimensionen, Jahresber. Deutsch. Math.-Verein. 4 (1894/95), 158-160. Zbl28.0493.01
  20. [20] A. Thorup, Counting quadrics, under preparation. 
  21. [21] A. Thorup and S. Kleiman, Complete bilinear forms, in: Algebraic Geometry, Sundance, 1986 (A. Holme and R. Speiser, eds.), Lecture Notes in Math. 1311, Springer-Verlag, Berlin, 1988, 253-320. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.