Displaying similar documents to “Lie powers of infinite-dimensional modules.”

Lie commutators in a free diassociative algebra

A.S. Dzhumadil'daev, N.A. Ismailov, A.T. Orazgaliyev (2020)

Communications in Mathematics

Similarity:

We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.

Hom-Lie superalgebra structures on exceptional simple Lie superalgebras of vector fields

Liping Sun, Wende Liu (2017)

Open Mathematics

Similarity:

According to the classification by Kac, there are eight Cartan series and five exceptional Lie superalgebras in infinite-dimensional simple linearly compact Lie superalgebras of vector fields. In this paper, the Hom-Lie superalgebra structures on the five exceptional Lie superalgebras of vector fields are studied. By making use of the ℤ-grading structures and the transitivity, we prove that there is only the trivial Hom-Lie superalgebra structures on exceptional simple Lie superalgebras....