Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations.
Yakovlev, M.N. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Yakovlev, M.N. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Yakovlev, M.N. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Ling, Rina (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Vrábel, Róbert (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
M. Cecchi, M. Marini, P. L. Zezza (1984)
Annales Polonici Mathematici
Similarity:
A. Lasota (1975)
Annales Polonici Mathematici
Similarity:
Ashordia, M. (1995)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Vrabel, Robert (2011)
Boundary Value Problems [electronic only]
Similarity:
A. Lasota (1980)
Annales Polonici Mathematici
Similarity:
A. Lasota, Z. Opial (1967)
Colloquium Mathematicae
Similarity:
M. Greguš (1974)
Annales Polonici Mathematici
Similarity:
Pinchas Bar-Yoseph, Moshe Israeli (1986)
Numerische Mathematik
Similarity:
Józef Wenety Myjak (1973)
Annales Polonici Mathematici
Similarity:
Daqing Jiang (2000)
Annales Polonici Mathematici
Similarity:
We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.
Henderson, Johnny (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity: