The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Uniqueness of limit cycles for a class of cubic systems with two invariant straight lines.”

Uniqueness of limit cycles bounded by two invariant parabolas

Eduardo Sáez, Iván Szántó (2012)

Applications of Mathematics

Similarity:

In this paper we consider a class of cubic polynomial systems with two invariant parabolas and prove in the parameter space the existence of neighborhoods such that in one the system has a unique limit cycle and in the other the system has at most three limit cycles, bounded by the invariant parabolas.

Five limit cycles for a simple cubic system.

Noel G. Lloyd, Jane M. Pearson (1997)

Publicacions Matemàtiques

Similarity:

We resolve the centre-focus problem for a specific class of cubic systems and determine the number of limit cycles which can bifurcate from a fine focus. We also describe the methods which we have developed to investigate these questions in general. These involve extensive use of Computer Algebra; we have chosen to use REDUCE.