Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
Eduardo Sáez; Eduardo Stange; Iván Szántó
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 105-114
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSáez, Eduardo, Stange, Eduardo, and Szántó, Iván. "Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four." Czechoslovak Mathematical Journal 57.1 (2007): 105-114. <http://eudml.org/doc/31116>.
@article{Sáez2007,
abstract = {A class of degree four differential systems that have an invariant conic $ x^2+Cy^2=1$, $C\in \{\mathbb \{R\}\}$, is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.},
author = {Sáez, Eduardo, Stange, Eduardo, Szántó, Iván},
journal = {Czechoslovak Mathematical Journal},
keywords = {stability; limit cycle; center; bifurcation; stability; limit cycles; center; bifurcations},
language = {eng},
number = {1},
pages = {105-114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four},
url = {http://eudml.org/doc/31116},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Sáez, Eduardo
AU - Stange, Eduardo
AU - Szántó, Iván
TI - Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 105
EP - 114
AB - A class of degree four differential systems that have an invariant conic $ x^2+Cy^2=1$, $C\in {\mathbb {R}}$, is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.
LA - eng
KW - stability; limit cycle; center; bifurcation; stability; limit cycles; center; bifurcations
UR - http://eudml.org/doc/31116
ER -
References
top- On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus, Mat. Sbornik 30(72) (1952), 181–196. (1952) Zbl0059.08201MR0045893
- Sur les courbes définies par des équations différentielles, Acta Math. 24 (1900), 1–88. (French) (1900)
- Some quadratics systems with at most one limit cycle, Dynam. report. Expositions Dynam. Systems (N.S.) 2 (1989), 61–88. (1989) MR1000976
- The solution of the problem of center for cubic differential systems with four invariant straight lines, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Nuova, Mat. 44 (Suppl.) (1999), 517–530. (1999) MR1814187
- 10.1007/BF02969386, Qual. Theory Dyn. Syst. 2 (2001), 129–143. (2001) MR1844982DOI10.1007/BF02969386
- 10.1016/S0362-546X(04)00278-0, Nonlinear Anal., Theory Methods Appl. 59 (2004), 673–693. (2004) MR2096323DOI10.1016/S0362-546X(04)00278-0
- Relative position and number of limit cycles of a quadratic differential system, Acta Math. Sin. 22 (1979), 751–758. (Chinese) (1979) MR0559742
- The limit cycles of some differential equations, Differ. Uravn. 8 (1972), 924–929. (Russian) (1972)
- 10.1017/S0308210500028195, Proc. R. Soc. Edinb. Sect. A 112 (1989), 113–134. (1989) Zbl0677.34034MR1007539DOI10.1017/S0308210500028195
- Closed orbits and straight line invariants in systems, Acta Mathematica Sci. 9 (1989), 251–261. (Chinese) (1989)
- Sur les cycles limites, S. M. F. Bull. 51 (1923), 45–188. (French) (1923) MR1504823
- 10.1090/S0002-9904-1902-00923-3, American Bull (2) 8 (1902), 437–479. (1902) MR1557926DOI10.1090/S0002-9904-1902-00923-3
- 10.1093/imamat/47.2.163, IMA J. Appl. Math. 47 (1991), 163–171. (1991) MR1130524DOI10.1093/imamat/47.2.163
- Limit cycles in polynomial systems, PhD. thesis, University of Technology, Delft, 1993. (1993)
- Hilbert’s 16th problem for , Kexue Tongbao 31 (1984), 718. (1984)
- Etude des oscillations entreteneues, Re. générale de l’électricité 23 (1928), 901–912. (French) (1928)
- 10.11650/twjm/1500575064, Taiwanese J. Math. 7 (2003), 275–281. (2003) MR1978016DOI10.11650/twjm/1500575064
- 10.1016/0893-9659(95)00095-X, Appl. Math. Lett. 9 (1996), 15–18. (1996) MR1389591DOI10.1016/0893-9659(95)00095-X
- 10.1016/S0898-1221(02)00161-X, Computers Math. Appl. 44 (2002), 445–455. (2002) MR1912841DOI10.1016/S0898-1221(02)00161-X
- Five limit cycles for a simple cubic system, Publications Mathematiques 41 (1997), 199–208. (1997) MR1461651
- Some cubic systems with several limit cycles, Nonlinearity (1988), 653–669. (1988) MR0967475
- 10.1016/0893-9659(94)90005-1, Appl. Math. Lett. 7 (1994), 23–27. (1994) MR1350389DOI10.1016/0893-9659(94)90005-1
- Mémorie sur les courbes définies par leś équations differentialles I–VI, Oeuvre I, Gauthier-Villar, Paris, 1880–1890. (French) (1880–1890)
- On dynamical systems close to Hamiltonian ones, Zh. Eksper. Teoret. Fiz. 4 (1934), 883–885. (Russian) (1934)
- A bibliography of the qualitative theory of quadratic systems of differential equation in the plane, Report TU Delft 92-17, second edition, 1992. (1992)
- 10.1016/S0362-546X(01)00565-X, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4521–4525. (2001) MR1975846DOI10.1016/S0362-546X(01)00565-X
- A concrete example of the existence of four limit cycles for planar quadratics systems, Sci. Sin. XXIII (1980), 153–158. (1980) MR0574405
- System of equation () has five limit cycles, Acta Math. Sin. 18 (1975). (Chinese) (1975)
- The -degree differential system with straight line solutions has no limit cycles, Proc. Conf. Ordinary Differential Equations and Control Theory, Wuhan 1987 (1987), 216–220. (Chinese) (1987) MR1043472
- 10.1080/14786442608564127, Philos. Magazine 7 (1926), 978–992. (1926) DOI10.1080/14786442608564127
- 10.1016/0022-0396(90)90004-9, J. Differ. Equations 87 (1990), 305–315. (1990) Zbl0712.34044MR1072903DOI10.1016/0022-0396(90)90004-9
- A survey of cubic systems, Ann. Differ. Equations 7 (1991), 323–363. (1991) Zbl0747.34019MR1139341
- Cubic Kolmogorov differential system with two limit cycles surrounding the same focus, Ann. Differ. Equations 1 (1985), 201–207. (1985) MR0834242
- Twelve limit cycles in a cubic order planar system with -symmetry, Communications on pure and applied analysis 3 (2004), 515–526. (2004) MR2098300
- 10.1088/0951-7715/8/5/011, Nonlinearity 8 (1995), 843–860. (1995) Zbl0837.34042MR1355046DOI10.1088/0951-7715/8/5/011
- A System for Doing Mathematics by Computer, Wolfram Research Mathematica, 1988. (1988) Zbl0671.65002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.