Displaying similar documents to “Continuous dependence and differentiability of solutions with respect to initial data and right-hand side for differential equations with deviating argument.”

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

Similarity:

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

On oscillation of a kind of integro-differential equation with delay

Binggen Zhang (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

This note contains a criterion for the oscillation of solution of a kind of integro-differential equations with delay.

Oscillation properties of second-order quasilinear difference equations with unbounded delay and advanced neutral terms

George E. Chatzarakis, Ponnuraj Dinakar, Srinivasan Selvarangam, Ethiraju Thandapani (2022)

Mathematica Bohemica

Similarity:

We obtain some new sufficient conditions for the oscillation of the solutions of the second-order quasilinear difference equations with delay and advanced neutral terms. The results established in this paper are applicable to equations whose neutral coefficients are unbounded. Thus, the results obtained here are new and complement some known results reported in the literature. Examples are also given to illustrate the applicability and strength of the obtained conditions over the known...

Oscillation of Nonlinear Neutral Delay Differential Equations

Elabbasy, E. M., Hassan, T. S. (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 34K15, 34C10. In this paper, we study the oscillatory behavior of first order nonlinear neutral delay differential equation (x(t) − q(t) x(t − σ(t))) ′ +f(t,x( t − τ(t))) = 0, where σ, τ ∈ C([t0,∞),(0,∞)), q О C([t0,∞), [0,∞)) and f ∈ C([t0,∞) ×R,R). The obtained results extended and improve several of the well known previously results in the literature. Our results are illustrated with an example.

On time transformations for differential equations with state-dependent delay

Alexander Rezounenko (2014)

Open Mathematics

Similarity:

Systems of differential equations with state-dependent delay are considered. The delay dynamically depends on the state, i.e. is governed by an additional differential equation. By applying the time transformations we arrive to constant delay systems and compare the asymptotic properties of the original and transformed systems.

Delay differential systems with time-varying delay: new directions for stability theory

James Louisell (2001)

Kybernetika

Similarity:

In this paper we give an example of Markus–Yamabe instability in a constant coefficient delay differential equation with time-varying delay. For all values of the range of the delay function, the characteristic function of the associated autonomous delay equation is exponentially stable. Still, the fundamental solution of the time-varying system is unbounded. We also present a modified example having absolutely continuous delay function, easily calculating the average variation of the...