W-perfect groups
Selami Ercan (2015)
Open Mathematics
Similarity:
In the present article we define W-paths of elements in a W-perfect group as a useful tools and obtain their basic properties.
Selami Ercan (2015)
Open Mathematics
Similarity:
In the present article we define W-paths of elements in a W-perfect group as a useful tools and obtain their basic properties.
R. Pérez-Gómez, Ceferino Ruiz (2000)
Visual Mathematics
Similarity:
Brison, Owen J. (1990)
Portugaliae mathematica
Similarity:
P. John, H. Sachs, H. Zernitz (1987)
Applicationes Mathematicae
Similarity:
G. L. Garg, B. Kumar (1989)
Matematički Vesnik
Similarity:
M. N. Mukherjee, S. Raychaudhuri (1993)
Matematički Vesnik
Similarity:
Tošić, Ratko, Vojvodić, Dušan (2000)
Novi Sad Journal of Mathematics
Similarity:
Tom De Medts, Attila Maróti (2013)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Min Tang, Xiao-Zhi Ren, Meng Li (2013)
Colloquium Mathematicae
Similarity:
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
Tomohiro Yamada (2005)
Colloquium Mathematicae
Similarity:
We show that there is an effectively computable upper bound of odd perfect numbers whose Euler factors are powers of fixed exponent.
Ivan Gutman (1991)
Publications de l'Institut Mathématique
Similarity:
Feigenbaum, Joan (1998)
Documenta Mathematica
Similarity: