Perfect numbers and finite groups
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 17-34
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDe Medts, Tom, and Maróti, Attila. "Perfect numbers and finite groups." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 17-34. <http://eudml.org/doc/275141>.
@article{DeMedts2013,
author = {De Medts, Tom, Maróti, Attila},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {perfect numbers; finite groups; Leinster groups; orders of normal subgroups; numbers of subgroups},
language = {eng},
pages = {17-34},
publisher = {Seminario Matematico of the University of Padua},
title = {Perfect numbers and finite groups},
url = {http://eudml.org/doc/275141},
volume = {129},
year = {2013},
}
TY - JOUR
AU - De Medts, Tom
AU - Maróti, Attila
TI - Perfect numbers and finite groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 17
EP - 34
LA - eng
KW - perfect numbers; finite groups; Leinster groups; orders of normal subgroups; numbers of subgroups
UR - http://eudml.org/doc/275141
ER -
References
top- [1] C. W. Anderson, The solution of , and some related considerations, unpublished manuscript (1974).
- [2] T. De Medts, Recovering n from , MathOverflow, http://mathoverflow.net/questions/56376.
- [3] T. De Medts - M. Tărnăuceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15, no. 4 (2008), pp. 699–704. Zbl1166.20017MR2475493
- [4] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, New York, 1967. MR224703
- [5] T. Leinster, Perfect numbers and groups, arXiv:math/0104012. Zbl1273.18009
- [6] T. Leinster, Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?, Math. Overflow, http://mathoverflow.net/questions/54851.
- [7] W. A. Stein et. al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2011, http://www.sagemath.org.
- [8] W. G. Stanton - J. A. Holdener, Abundancy outlaws of the form , J. Integer Sequences 10 (2007), Article 09.7.6. Zbl1174.11005MR2346095
- [9] http://java.ugent.be/~tdemedts/leinster.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.