Displaying similar documents to “Numerical algorithm for the stationary, nonhomogeneous Navier-Stokes equations.”

Global attractor for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2010)

Annales Polonici Mathematici

Similarity:

Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.

Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell, Noel J. Walkington (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.

On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation

M. Pulvirenti (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.

The Stokes system in the incompressible case-revisited

Rainer Picard (2008)

Banach Center Publications

Similarity:

The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

Similarity:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...