Displaying similar documents to “Degree one cohomology for the Lie algebras of derivations.”

The local integration of Leibniz algebras

Simon Covez (2013)

Annales de l’institut Fourier

Similarity:

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article...

Distinguishing derived equivalence classes using the second Hochschild cohomology group

Deena Al-Kadi (2010)

Colloquium Mathematicae

Similarity:

We study the second Hochschild cohomology group of the preprojective algebra of type D₄ over an algebraically closed field K of characteristic 2. We also calculate the second Hochschild cohomology group of a non-standard algebra which arises as a socle deformation of this preprojective algebra and so show that the two algebras are not derived equivalent. This answers a question raised by Holm and Skowroński.

Lie Derivations on Trivial Extension Algebras

Amir Hosein Mokhtari, Fahimeh Moafian, Hamid Reza Ebrahimi Vishki (2017)

Annales Mathematicae Silesianae

Similarity:

In this paper we provide some conditions under which a Lie derivation on a trivial extension algebra is proper, that is, it can be expressed as a sum of a derivation and a center valued map vanishing at commutators. We then apply our results for triangular algebras. Some illuminating examples are also included.

Hochschild cohomology of generalized multicoil algebras

Piotr Malicki, Andrzej Skowroński (2014)

Colloquium Mathematicae

Similarity:

We determine the Hochschild cohomology of all finite-dimensional generalized multicoil algebras over an algebraically closed field, which are the algebras for which the Auslander-Reiten quiver admits a separating family of almost cyclic coherent components. In particular, the analytically rigid generalized multicoil algebras are described.