The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extrait d'une Lettre adressée à M. Liouville.”

Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes

M. El Marraki (1995)

Journal de théorie des nombres de Bordeaux

Similarity:

On établit les majorations M ( x ) 0 . 002969 x ( log x ) 1 / 2 , valable pour x 142194 , M ( x ) 0 . 6437752 x log x qui est la meilleure majoration possible en x log x valable pour tout x > 1 ( M ( 5 ) = 2 = 0 . 6437752 × 5 log 5 ) , et d’autres analogues. On montre enfin comment trouver des majorations effectives M ( x ) > c k x ( log log x ) 2 k ( log x ) k pour tout k .

Bornes effectives pour certaines fonctions concernant les nombres premiers

Jean-Pierre Massias, Guy Robin (1996)

Journal de théorie des nombres de Bordeaux

Similarity:

Si p k est le k è m e nombre premier, θ ( p k ) = i = 1 k log p i la fonction de Chebyshev. Nous obtenons de nouvelles estimations et des améliorations des bornes données par Rosser et Schoenfeld, Schoenfeld et Robin pour les fonctions p k , θ ( p k ) , S k = i = 1 k p i , et S ( x ) = p x p . Ces estimations sont obtenues en utilisant des méthodes basées sur l’intégrale de Stieltjes et par calcul direct pour les petites valeurs.