Displaying similar documents to “The q-Numerical Range of Matrix Polynomials, II”

Some relations on Humbert matrix polynomials

Ayman Shehata (2016)

Mathematica Bohemica

Similarity:

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix...

Structured Matrix Methods Computing the Greatest Common Divisor of Polynomials

Dimitrios Christou, Marilena Mitrouli, Dimitrios Triantafyllou (2017)

Special Matrices

Similarity:

This paper revisits the Bézout, Sylvester, and power-basis matrix representations of the greatest common divisor (GCD) of sets of several polynomials. Furthermore, the present work introduces the application of the QR decomposition with column pivoting to a Bézout matrix achieving the computation of the degree and the coeffcients of the GCD through the range of the Bézout matrix. A comparison in terms of computational complexity and numerical effciency of the Bézout-QR, Sylvester-QR,...

A fixed point method to compute solvents of matrix polynomials

Fernando Marcos, Edgar Pereira (2010)

Mathematica Bohemica

Similarity:

Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.

Factorization makes fast Walsh, PONS and other Hadamard-like transforms easy

Kautsky, Jaroslav

Similarity:

A simple device, based on the factorization of invertible matrix polynomials, enabling to identify the possibility of fast implementation of linear transforms is presented. Its applicability is demonstrated in the case of Hadamard matrices and their generalization, Hadamard matrix polynomials.

Remarks on inverse of matrix polynomials

Fischer, Cyril, Náprstek, Jiří

Similarity:

Analysis of a non-classically damped engineering structure, which is subjected to an external excitation, leads to the solution of a system of second order ordinary differential equations. Although there exists a large variety of powerful numerical methods to accomplish this task, in some cases it is convenient to formulate the explicit inversion of the respective quadratic fundamental system. The presented contribution uses and extends concepts in matrix polynomial theory and proposes...

Matrix quadratic equations column/row reduced factorizations and an inertia theorem for matrix polynomials

Irina Karelin, Leonid Lerer (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of...