Displaying similar documents to “A Ciesielski–Taylor type identity for positive self-similar Markov processes”

Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes

Patie Pierre (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any , >0, ≥0 and a smooth function on + , 𝐋 ( γ ) f ( x ) = x - α ( σ 2 x 2 f ' ' ( x ) + ( σ γ + b ) x f ' ( x ) + 0 f e - r x - f ( x ) e - r γ + x f ' ( x ) r 𝕀 { r 1 } ν ( d r ) ) , ( 0 . 1 ) where the coefficients b ,≥0 and the measure , which satisfies the integrability condition (1∧ )(d)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent . ...

Refracted Lévy processes

A. E. Kyprianou, R. L. Loeffen (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation d =− { ...