Displaying similar documents to “A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations”

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative...

A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations

Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard...

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative...

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

A multilevel preconditioner for the mortar method for nonconforming finite element

Talal Rahman, Xuejun Xu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A multilevel preconditioner based on the abstract framework of the auxiliary space method, is developed for the mortar method for the nonconforming finite element or the lowest order Crouzeix-Raviart finite element on nonmatching grids. It is shown that the proposed preconditioner is quasi-optimal in the sense that the condition number of the preconditioned system is independent of the mesh size, and depends only quadratically on the number of refinement levels. Some...

A finite element method for domain decomposition with non-matching grids

Roland Becker, Peter Hansbo, Rolf Stenberg (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson’s equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.