The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Deviation bounds for additive functionals of Markov processes”

Dichotomies for 𝐂 0 ( X ) and 𝐂 b ( X ) spaces

Szymon Głąb, Filip Strobin (2013)

Czechoslovak Mathematical Journal

Similarity:

Jachymski showed that the set ( x , y ) 𝐜 0 × 𝐜 0 : i = 1 n α ( i ) x ( i ) y ( i ) n = 1 is bounded is either a meager subset of 𝐜 0 × 𝐜 0 or is equal to 𝐜 0 × 𝐜 0 . In the paper we generalize this result by considering more general spaces than 𝐜 0 , namely 𝐂 0 ( X ) , the space of all continuous functions which vanish at infinity, and 𝐂 b ( X ) , the space of all continuous bounded functions. Moreover, we replace the meagerness by σ -porosity.

Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein, Beatriz E. Viviani (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the setting of spaces of homogeneous-type, we define the Integral, I φ , and Derivative, D φ , operators of order φ , where φ is a function of positive lower type and upper type less than 1 , and show that I φ and D φ are bounded from Lipschitz spaces Λ ξ to Λ ξ φ and Λ ξ / φ respectively, with suitable restrictions on the quasi-increasing function ξ in each case. We also prove that I φ and D φ are bounded from the generalized Besov B ˙ p ψ , q , with 1 p , q < , and Triebel-Lizorkin spaces F ˙ p ψ , q , with 1 < p , q < , of order ψ to those of order...