Displaying similar documents to “On the two-dimensional compressible isentropic Navier–Stokes equations”

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Martin Lanzendörfer, Jan Stebel (2011)

Applications of Mathematics

Similarity:

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results. ...

On the exterior steady problem for the equations of a viscous isothermal gas

Mariarosaria Padula (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density ϱ , moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences)...

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima Amoura, Christine Bernardi, Nejmeddine Chorfi (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns...