Displaying similar documents to “Symplectic Pontryagin approximations for optimal design”

Convergence rates of symplectic Pontryagin approximations in optimal control theory

Mattias Sandberg, Anders Szepessy (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Many inverse problems for differential equations can be formulated as optimal control problems. It is well known that inverse problems often need to be regularized to obtain good approximations. This work presents a systematic method to regularize and to establish error estimates for approximations to some control problems in high dimension, based on symplectic approximation of the Hamiltonian system for the control problem. In particular the work derives error estimates and constructs...

Symplectic Pontryagin approximations for optimal design

Jesper Carlsson, Mattias Sandberg, Anders Szepessy (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian...

Arrow-type sufficient conditions for optimality of age-structured control problems

Vladimir Krastev (2013)

Open Mathematics

Similarity:

We consider a class of age-structured control problems with nonlocal dynamics and boundary conditions. For these problems we suggest Arrow-type sufficient conditions for optimality of problems defined on finite as well as infinite time intervals. We examine some models as illustrations (optimal education and optimal offence control problems).

GO++ : a modular lagrangian/eulerian software for Hamilton Jacobi equations of geometric optics type

Jean-David Benamou, Philippe Hoch (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.

Smooth optimal synthesis for infinite horizon variational problems

Andrei A. Agrachev, Francesca C. Chittaro (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification...

Inversion in indirect optimal control of multivariable systems

François Chaplais, Nicolas Petit (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration. ...