Convergence rates of symplectic Pontryagin approximations in optimal control theory
Mattias Sandberg; Anders Szepessy
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 1, page 149-173
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y. Achdou and O. Pironneau, Volatility smile by multilevel least square. Int. J. Theor. Appl. Finance5 (2002) 619–643.
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris. Math. Appl. (Berlin) 17 (1994).
- G. Barles and E. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN36 (2002) 33–54.
- E. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations. Trans. Amer. Math. Soc.298 (1986) 635–641.
- M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, with appendices by M. Falcone and P. Soravia, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA (1997).
- P. Cannarsa and H. Frankowska, Some characterizations of the optimal trajectories in control theory. SIAM J. Control Optim.29 (1991) 1322–1347.
- P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rational Mech. Anal.140 (1997) 197–223.
- J. Carlsson, M. Sandberg and A. Szepessy, Symplectic Pontryagin approximations for optimal design, preprint www.nada.kth.se/~szepessy.
- M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277 (1983) 1–42.
- M. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp.43 (1984) 1–19.
- M. Crandall, L.C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.282 (1984) 487–502.
- B. Dupire, Pricing with a smile. Risk (1994) 18–20.
- H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic Publishers Group, Dordrecht. Math. Appl.375 (1996).
- L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (1998).
- M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys.175 (2002) 559–575.
- H. Frankowska, Contigent cones to reachable sets of control systems. SIAM J. Control Optim.27 (1989) 170–198.
- R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta numerica (1994), 269–378, Acta Numer., Cambridge Univ. Press, Cambridge (1994).
- R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta numerica (1995), 159–333, Acta Numer., Cambridge Univ. Press, Cambridge (1995).
- E. Harrier, C. Lubich and G. Wanner, Geometric Numerical Integrators: Structure Preserving Algorithms for Ordinary Differential Equations, Springer (2002).
- C.-T. Lin and E. Tadmor, L1-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math.87 (2001) 701–735.
- B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2001).
- P. Pedregal, Optimization, relaxation and Young measures. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 27–58.
- E. Polak, Optimization, Algorithms and Consistent Approximations, Springer-Verlag, New York. Appl. Math. Sci.124. (1997).
- L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon Press (1964).
- M. Sandberg, Convergence rates for Euler approximation of non convex differential inclusions, work in progress.
- M. Sandberg, Convergence rates for Symplectic Euler approximations of the Ginzburg-Landau equation, work in progress.
- P. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations56 (1985) 345–390.
- A. Subbotin, Generalized Solutions of First-Order PDEs. The Dynamical Optimization Perspective. Translated from the Russian. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995).
- C. Vogel, Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002).
- L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. Saunders Co., Philadelphia-London-Toronto, Ont. (1969).