Displaying similar documents to “Cycle and path embedding on 5-ary N-cubes”

Graphs isomorphic to their path graphs

Martin Knor, Ľudovít Niepel (2002)

Mathematica Bohemica

Similarity:

We prove that for every number n 1 , the n -iterated P 3 -path graph of G is isomorphic to G if and only if G is a collection of cycles, each of length at least 4. Hence, G is isomorphic to P 3 ( G ) if and only if G is a collection of cycles, each of length at least 4. Moreover, for k 4 we reduce the problem of characterizing graphs G such that P k ( G ) G to graphs without cycles of length exceeding k .

Cycle-pancyclism in bipartite tournaments I

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k? It is proved that for an even k in the range 4 ≤ k ≤ [(n+4)/2], there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 3 and the result is best possible. In a forthcoming paper the case of directed cycles of length k, k even and k <...

Containers and wide diameters of P 3 ( G )

Daniela Ferrero, Manju K. Menon, A. Vijayakumar (2012)

Mathematica Bohemica

Similarity:

The P 3 intersection graph of a graph G has for vertices all the induced paths of order 3 in G . Two vertices in P 3 ( G ) are adjacent if the corresponding paths in G are not disjoint. A w -container between two different vertices u and v in a graph G is a set of w internally vertex disjoint paths between u and v . The length of a container is the length of the longest path in it. The w -wide diameter of G is the minimum number l such that there is a w -container of length at most l between any pair...

Cycle-pancyclism in bipartite tournaments II

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 4 and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was...

Histories in path graphs

Ludovít Niepel (2007)

Discussiones Mathematicae Graph Theory

Similarity:

For a given graph G and a positive integer r the r-path graph, P r ( G ) , has for vertices the set of all paths of length r in G. Two vertices are adjacent when the intersection of the corresponding paths forms a path of length r-1, and their union forms either a cycle or a path of length k+1 in G. Let P r k ( G ) be the k-iteration of r-path graph operator on a connected graph G. Let H be a subgraph of P r k ( G ) . The k-history P r - k ( H ) is a subgraph of G that is induced by all edges that take part in the recursive...

Paths of low weight in planar graphs

Igor Fabrici, Jochen Harant, Stanislav Jendrol&#039; (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The existence of paths of low degree sum of their vertices in planar graphs is investigated. The main results of the paper are: 1. Every 3-connected simple planar graph G that contains a k-path, a path on k vertices, also contains a k-path P such that for its weight (the sum of degrees of its vertices) in G it holds w G ( P ) : = u V ( P ) d e g G ( u ) ( 3 / 2 ) k ² + ( k ) 2. Every plane triangulation T that contains a k-path also contains a k-path P such that for its weight in T it holds w T ( P ) : = u V ( P ) d e g T ( u ) k ² + 13 k 3. Let G be a 3-connected simple planar graph of...

A conjecture on cycle-pancyclism in tournaments

Hortensia Galeana-Sánchez, Sergio Rajsbaum (1998)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote I γ ( C ) = | A ( γ ) A ( C ) | , the number of arcs that γ and Cₖ have in common. Let f ( k , T , γ ) = m a x I γ ( C ) | C T and f(n,k) = minf(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T. In previous...