Displaying similar documents to “A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D”

A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations

Barbara I. Wohlmuth (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient...

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative...

A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations

Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard...

Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case

Jean Luc Guermond, Peter D. Minev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge...