The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Nonlinear observers in reflexive Banach spaces”

On determining unknown functions in differential systems, with an application to biological reactors

Éric Busvelle, Jean-Paul Gauthier (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function ϕ . We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or...

Nonlinear observers for locally uniformly observable systems

Hassan Hammouri, M. Farza (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper deals with the observability analysis and the observer synthesis of a class of nonlinear systems. In the single output case, it is known [4, 5, 6] that systems which are observable independently of the inputs, admit an observable canonical form. These systems are called uniformly observable systems. Moreover, a high gain observer for these systems can be designed on the basis of this canonical form. In this paper, we extend the above results to multi-output uniformly observable...

Near viability for fully nonlinear differential inclusions

Irina Căpraru, Alina Lazu (2014)

Open Mathematics

Similarity:

We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma...