Displaying similar documents to “On the subgroups of completely decomposable torsion-free groups that are ideals in every ring”

On the maximal spectrum of commutative semiprimitive rings

K. Samei (2000)

Colloquium Mathematicae

Similarity:

The space of maximal ideals is studied on semiprimitive rings and reduced rings, and the relation between topological properties of Max(R) and algebric properties of the ring R are investigated. The socle of semiprimitive rings is characterized homologically, and it is shown that the socle is a direct sum of its localizations with respect to isolated maximal ideals. We observe that the Goldie dimension of a semiprimitive ring R is equal to the Suslin number of Max(R).

Integral closures of ideals in the Rees ring

Y. Tiraş (1993)

Colloquium Mathematicae

Similarity:

The important ideas of reduction and integral closure of an ideal in a commutative Noetherian ring A (with identity) were introduced by Northcott and Rees [4]; a brief and direct approach to their theory is given in [6, (1.1)]. We begin by briefly summarizing some of the main aspects.

Classification of self-dual torsion-free LCA groups

S. Wu (1992)

Fundamenta Mathematicae

Similarity:

In this paper we seek to describe the structure of self-dual torsion-free LCA groups. We first present a proof of the structure theorem of self-dual torsion-free metric LCA groups. Then we generalize the structure theorem to a larger class of self-dual torsion-free LCA groups. We also give a characterization of torsion-free divisible LCA groups. Consequently, a complete classification of self-dual divisible LCA groups is obtained; and any self-dual torsion-free LCA group can be regarded...