The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the geometry of frame bundles”

On Riemannian tangent bundles.

Al-Aqeel, Adnan, Bejancu, Aurel (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

Invariance of g -natural metrics on linear frame bundles

Oldřich Kowalski, Masami Sekizawa (2008)

Archivum Mathematicum

Similarity:

In this paper we prove that each g -natural metric on a linear frame bundle L M over a Riemannian manifold ( M , g ) is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define g -natural metrics on the orthonormal frame bundle O M and we prove the same invariance result as above for O M . Hence we see that, over a space ( M , g ) of constant sectional curvature, the bundle O M with an arbitrary g -natural metric G ˜ is locally homogeneous.