The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pcf theory and cardinal invariants of the reals”

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals...

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

More on cardinal invariants of analytic P -ideals

Barnabás Farkas, Lajos Soukup (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given an ideal on ω let 𝔞 ( ) ( 𝔞 ¯ ( ) ) be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of [ ω ] ω . We show that 𝔞 ( h ) > ω if h is a summable ideal; but 𝔞 ( 𝒵 μ ) = ω for any tall density ideal 𝒵 μ including the density zero ideal 𝒵 . On the other hand, you have 𝔟 𝔞 ¯ ( ) for any analytic P -ideal , and 𝔞 ¯ ( 𝒵 μ ) 𝔞 for each density ideal 𝒵 μ . For each ideal on ω denote 𝔟 and 𝔡 the unbounding and dominating numbers of ω ω , where f g iff { n ω : f ( n ) > g ( n ) } . We show that 𝔟 = 𝔟 and 𝔡 = 𝔡 for each analytic P -ideal . Given a Borel...

ω H-sets and cardinal invariants

Alessandro Fedeli (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A subset A of a Hausdorff space X is called an ω H-set in X if for every open family 𝒰 in X such that A 𝒰 there exists a countable subfamily 𝒱 of 𝒰 such that A { V ¯ : V 𝒱 } . In this paper we introduce a new cardinal function t s θ and show that | A | 2 t s θ ( X ) ψ c ( X ) for every ω H-set A of a Hausdorff space X .

Supercompactness and failures of GCH

Sy-David Friedman, Radek Honzik (2012)

Fundamenta Mathematicae

Similarity:

Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s...

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...