Displaying similar documents to “Pcf theory and cardinal invariants of the reals”

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals...

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

More on cardinal invariants of analytic P -ideals

Barnabás Farkas, Lajos Soukup (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given an ideal on ω let 𝔞 ( ) ( 𝔞 ¯ ( ) ) be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of [ ω ] ω . We show that 𝔞 ( h ) > ω if h is a summable ideal; but 𝔞 ( 𝒵 μ ) = ω for any tall density ideal 𝒵 μ including the density zero ideal 𝒵 . On the other hand, you have 𝔟 𝔞 ¯ ( ) for any analytic P -ideal , and 𝔞 ¯ ( 𝒵 μ ) 𝔞 for each density ideal 𝒵 μ . For each ideal on ω denote 𝔟 and 𝔡 the unbounding and dominating numbers of ω ω , where f g iff { n ω : f ( n ) > g ( n ) } . We show that 𝔟 = 𝔟 and 𝔡 = 𝔡 for each analytic P -ideal . Given a Borel...