Displaying similar documents to “Overlap integrals between s - , p - and d - Gaussian functions”

Some estimates for the first eigenvalue of the Sturm-Liouville problem with a weight integral condition

Maria Telnova (2012)

Mathematica Bohemica

Similarity:

Let λ 1 ( Q ) be the first eigenvalue of the Sturm-Liouville problem y ' ' - Q ( x ) y + λ y = 0 , y ( 0 ) = y ( 1 ) = 0 , 0 < x < 1 . We give some estimates for m α , β , γ = inf Q T α , β , γ λ 1 ( Q ) and M α , β , γ = sup Q T α , β , γ λ 1 ( Q ) , where T α , β , γ is the set of real-valued measurable on 0 , 1 x α ( 1 - x ) β -weighted L γ -functions Q with non-negative values such that 0 1 x α ( 1 - x ) β Q γ ( x ) d x = 1 ( α , β , γ , γ 0 ) .

Some estimates for the oscillation of the deformation gradient

Vratislava Mošová (2000)

Applications of Mathematics

Similarity:

As a measure of deformation we can take the difference D φ - R , where D φ is the deformation gradient of the mapping φ and R is the deformation gradient of the mapping γ , which represents some proper rigid motion. In this article, the norm D φ - R L p ( Ω ) is estimated by means of the scalar measure e ( φ ) of nonlinear strain. First, the estimates are given for a deformation φ W 1 , p ( Ω ) satisfying the condition φ | Ω = id . Then we deduce the estimate in the case that φ ( x ) is a bi-Lipschitzian deformation and φ | Ω id .

Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case q = 3 d d + 2

Jörg Wolf (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we consider weak solutions 𝐮 : Ω d to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω d ( d = 2 or d = 3 ). For the critical case q = 3 d d + 2 we prove the higher integrability of 𝐮 which forms the basis for applying the method of differences in order to get fractional differentiability of 𝐮 . From this we show the existence of second order weak derivatives of u .