Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions
Bernard Bereanu (1972)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Bernard Bereanu (1972)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Syau, Yu-Ru (1999)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Zhi-Gang (2006)
Lobachevskii Journal of Mathematics
Similarity:
Wang, Zhi-Gang, Chen, Hui (2007)
Lobachevskii Journal of Mathematics
Similarity:
Looney, Carl G. (1978)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Stefan Mititelu (1974)
RAIRO - Operations Research - Recherche Opérationnelle
Similarity:
Carbone, A. (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Malivert, C., Boissard, N. (1994)
Journal of Convex Analysis
Similarity:
H. Komiya (1981)
Fundamenta Mathematicae
Similarity:
Zyskowski, Janusz (2015-11-13T12:11:38Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Zbigniew Lipecki (2011)
Colloquium Mathematicae
Similarity:
We show that the cardinality of a compact convex set W in a topological linear space X satisfies the condition that . We also establish some relations between the cardinality of W and that of extrW provided X is locally convex. Moreover, we deal with the cardinality of the convex set E(μ) of all quasi-measure extensions of a quasi-measure μ, defined on an algebra of sets, to a larger algebra of sets, and relate it to the cardinality of extrE(μ).