The tangent function and power residues modulo primes

Zhi-Wei Sun

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 971-978
  • ISSN: 0011-4642

Abstract

top
Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

How to cite

top

Sun, Zhi-Wei. "The tangent function and power residues modulo primes." Czechoslovak Mathematical Journal 73.3 (2023): 971-978. <http://eudml.org/doc/299110>.

@article{Sun2023,
abstract = {Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\hspace\{4.44443pt\}(\@mod \; 2m)$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _\{k\in R_m(p)\}(1+\tan (\pi ak/p))$, where \[ R\_m(p)=\lbrace 0<k<p\colon k\in \mathbb \{Z\}\ \text\{is an\}\ m\text\{th power residue modulo\}\ p\rbrace . \] In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb \{Z\}$, then \[ \prod \_\{k\in R\_4(p)\} \Big (1+\tan \pi \frac\{ak\}\{p\}\Big )=(-1)^\{y\}(-2)^\{(p-1)/8\}. \]},
author = {Sun, Zhi-Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {power residues modulo prime; the tangent function; identity},
language = {eng},
number = {3},
pages = {971-978},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The tangent function and power residues modulo primes},
url = {http://eudml.org/doc/299110},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Sun, Zhi-Wei
TI - The tangent function and power residues modulo primes
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 971
EP - 978
AB - Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\hspace{4.44443pt}(\@mod \; 2m)$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where \[ R_m(p)=\lbrace 0<k<p\colon k\in \mathbb {Z}\ \text{is an}\ m\text{th power residue modulo}\ p\rbrace . \] In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb {Z}$, then \[ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac{ak}{p}\Big )=(-1)^{y}(-2)^{(p-1)/8}. \]
LA - eng
KW - power residues modulo prime; the tangent function; identity
UR - http://eudml.org/doc/299110
ER -

References

top
  1. Berndt, B. C., Evans, R. J., Williams, K. S., Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998). (1998) Zbl0906.11001MR1625181
  2. Cox, D. A., 10.1002/9781118400722, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989). (1989) Zbl0956.11500MR1028322DOI10.1002/9781118400722
  3. Ireland, K., Rosen, M., 10.1007/978-1-4757-2103-4, Graduate Texts in Mathematics 84. Springer, New York (1990). (1990) Zbl0712.11001MR1070716DOI10.1007/978-1-4757-2103-4
  4. Sun, Z.-W., 10.5486/PMD.2023.9352, Publ. Math. Debr. 102 (2023), 111-138. (2023) Zbl7650970MR4556502DOI10.5486/PMD.2023.9352

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.