The search session has expired. Please query the service again.

Displaying similar documents to “Some experiences in numerical treatments of nonlinear eigenvalue problems”

Adaptive finite element analysis based on perturbation arguments

Dai, Xiaoying, He, Lianhua, Zhou, Aihui

Similarity:

We review some numerical analysis of an adaptive finite element method (AFEM) for a class of elliptic partial differential equations based on a perturbation argument. This argument makes use of the relationship between the general problem and a model problem, whose adaptive finite element analysis is existing, from which we get the convergence and the complexity of adaptive finite element methods for a nonsymmetric boundary value problem, an eigenvalue problem, a nonlinear boundary...

The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem

Lu Zou, Yuan Lei (2023)

Applications of Mathematics

Similarity:

For the symmetric Pareto Eigenvalue Complementarity Problem (EiCP), by reformulating it as a constrained optimization problem on a differentiable Rayleigh quotient function, we present a class of descent methods and prove their convergence. The main features include: using nonlinear complementarity functions (NCP functions) and Rayleigh quotient gradient as the descent direction, and determining the step size with exact linear search. In addition, these algorithms are further extended...

A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding.

Julián Fernández Bonder, Julio D. Rossi (2002)

Publicacions Matemàtiques

Similarity:

In this paper we study the Sobolev trace embedding W(Ω) → L (∂Ω), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues λ / +∞ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end...