The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem
Applications of Mathematics (2023)
- Volume: 68, Issue: 4, page 441-465
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZou, Lu, and Lei, Yuan. "The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem." Applications of Mathematics 68.4 (2023): 441-465. <http://eudml.org/doc/299570>.
@article{Zou2023,
abstract = {For the symmetric Pareto Eigenvalue Complementarity Problem (EiCP), by reformulating it as a constrained optimization problem on a differentiable Rayleigh quotient function, we present a class of descent methods and prove their convergence. The main features include: using nonlinear complementarity functions (NCP functions) and Rayleigh quotient gradient as the descent direction, and determining the step size with exact linear search. In addition, these algorithms are further extended to solve the Generalized Eigenvalue Complementarity Problem (GEiCP) derived from unilateral friction elastic systems. Numerical experiments show the efficiency of the proposed methods compared to the projected steepest descent method with less CPU time.},
author = {Zou, Lu, Lei, Yuan},
journal = {Applications of Mathematics},
keywords = {Pareto eigenvalue complementarity problem; generalized eigenvalue complementarity problem; nonlinear complementarity function; descent algorithm},
language = {eng},
number = {4},
pages = {441-465},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem},
url = {http://eudml.org/doc/299570},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Zou, Lu
AU - Lei, Yuan
TI - The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 441
EP - 465
AB - For the symmetric Pareto Eigenvalue Complementarity Problem (EiCP), by reformulating it as a constrained optimization problem on a differentiable Rayleigh quotient function, we present a class of descent methods and prove their convergence. The main features include: using nonlinear complementarity functions (NCP functions) and Rayleigh quotient gradient as the descent direction, and determining the step size with exact linear search. In addition, these algorithms are further extended to solve the Generalized Eigenvalue Complementarity Problem (GEiCP) derived from unilateral friction elastic systems. Numerical experiments show the efficiency of the proposed methods compared to the projected steepest descent method with less CPU time.
LA - eng
KW - Pareto eigenvalue complementarity problem; generalized eigenvalue complementarity problem; nonlinear complementarity function; descent algorithm
UR - http://eudml.org/doc/299570
ER -
References
top- Adly, S., Rammal, H., 10.1007/s10589-013-9534-y, Comput. Optim. Appl. 55 (2013), 703-731. (2013) Zbl1296.90124MR3071170DOI10.1007/s10589-013-9534-y
- Adly, S., Seeger, A., 10.1007/s10589-009-9297-7, Comput. Optim. Appl. 49 (2011), 299-318. (2011) Zbl1220.90128MR2795719DOI10.1007/s10589-009-9297-7
- Barker, G. P., 10.1016/0024-3795(81)90310-4, Linear Algebra Appl 39 (1981), 263-291. (1981) Zbl0467.15002MR0625256DOI10.1016/0024-3795(81)90310-4
- Brás, C. P., Fischer, A., Júdice, J., Schönefeld, K., Seifert, S., 10.1016/j.amc.2016.09.005, Appl. Math. Comput. 294 (2017), 36-48. (2017) Zbl1411.90335MR3558259DOI10.1016/j.amc.2016.09.005
- Chen, J.-S., 10.1142/S0217595907001292, Asia-Pac. J. Oper. Res. 24 (2007), 401-420. (2007) Zbl1141.90557MR2335554DOI10.1142/S0217595907001292
- Chen, J.-S., Pan, S., 10.1007/s10589-007-9086-0, Comput. Optim. Appl. 40 (2008), 389-404. (2008) Zbl1153.90542MR2411201DOI10.1007/s10589-007-9086-0
- Cottle, R. W., Pang, J.-S., Stone, R. E., 10.1137/1.9780898719000, Computer Science and Scientific Computing. Academic Press, Boston (1992). (1992) Zbl0757.90078MR1150683DOI10.1137/1.9780898719000
- Júdice, J. J., Raydan, M., Rosa, S. S., Santos, S. A., 10.1007/s11075-008-9194-7, Numer. Algorithms 47 (2008), 391-407. (2008) Zbl1144.65042MR2393205DOI10.1007/s11075-008-9194-7
- Júdice, J. J., Sherali, H. D., Ribeiro, I. M., 10.1007/s10589-007-9017-0, Comput. Optim. Appl. 37 (2007), 139-156. (2007) Zbl1181.90261MR2325654DOI10.1007/s10589-007-9017-0
- Kučera, M., 10.21136/CMJ.1982.101796, Czech. Math. J. 32 (1982), 197-207. (1982) Zbl0621.49005MR0654056DOI10.21136/CMJ.1982.101796
- Le, V. K., 10.1006/jdeq.1996.0156, J. Differ. Equations 131 (1996), 39-78. (1996) Zbl0863.49008MR1415046DOI10.1006/jdeq.1996.0156
- Thi, H. A. Le, Moeini, M., Dinh, T. Pham, Júdice, J., 10.1007/s10589-010-9388-5, Comput. Optim. Appl. 51 (2012), 1097-1117. (2012) Zbl1241.90153MR2891930DOI10.1007/s10589-010-9388-5
- Ma, C., 10.1016/j.apm.2011.05.045, Appl. Math. Modelling 36 (2012), 279-287. (2012) Zbl1236.65058MR2835011DOI10.1016/j.apm.2011.05.045
- Martins, J. A. C., Costa, A. Pinto Da, 10.1016/S0020-7683(98)00291-1, Int. J. Solids Struct. 37 (2000), 2519-2564. (2000) Zbl0959.74048MR1757063DOI10.1016/S0020-7683(98)00291-1
- Martins, J. A. C., Costa, A. Pinto Da, Bifurcations and instabilities in frictional contact problems: Theoretical relations, computational methods and numerical results, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 University of Jyväskylä, Jyväskylä (2004), 102095. (2004)
- Costa, A. Pinto Da, Martins, J. A. C., Computation of bifurcations and instabilities in some frictional contact problems, Available at https://www.researchgate.net/publication/278629570Computationofbifurcationsandinstabilitiesinsomefrictionalcontactproblems (2001), 15 pages. (2001)
- Costa, A. Pinto Da, Martins, J. A. C., Figueiredo, I. N., Júdice, J. J., 10.1016/j.cma.2003.09.013, Comput. Methods Appl. Mech. Eng. 193 (2004), 357-384. (2004) Zbl1075.74596MR2031232DOI10.1016/j.cma.2003.09.013
- Costa, A. Pinto Da, Seeger, A., 10.1007/s10589-008-9167-8, Comput. Optim. Appl. 45 (2010), 25-57. (2010) Zbl1193.65039MR2594595DOI10.1007/s10589-008-9167-8
- M. Queiroz, J. Júdice, C. Humes, Jr., 10.1090/S0025-5718-03-01614-4, Math. Comput. 73 (2004), 1849-1863. (2004) Zbl1119.90059MR2059739DOI10.1090/S0025-5718-03-01614-4
- Quittner, P., Spectral analysis of variational inequalities, Commentat. Math. Univ. Carol. 27 (1986), 605-629. (1986) MR0873631
- Seeger, A., 10.1016/S0024-3795(99)00004-X, Linear Algebra Appl. 292 (1999), 1-14. (1999) Zbl1016.90067MR1689301DOI10.1016/S0024-3795(99)00004-X
- Seeger, A., Torki, M., 10.1016/S0024-3795(03)00553-6, Linear Algebra Appl. 372 (2003), 181-206. (2003) Zbl1046.15008MR1999147DOI10.1016/S0024-3795(03)00553-6
- Seeger, A., Torki, M., 10.1007/s10898-007-9225-2, J. Glob. Optim. 44 (2009), 1-28. (2009) Zbl1179.90255MR2496064DOI10.1007/s10898-007-9225-2
- Seeger, A., Vicente-Perez, J., 10.13001/1081-3810.1472, Electron. J. Linear Algebra 22 (2011), 758-766. (2011) Zbl1254.15015MR2831028DOI10.13001/1081-3810.1472
- Tam, B.-S., 10.1016/j.laa.2004.08.020, Linear Algebra Appl. 393 (2004), 375-429. (2004) Zbl1062.15013MR2098599DOI10.1016/j.laa.2004.08.020
- Zcghloul, T., Villechaise, B., 10.1016/S0167-8922(08)70767-3, Tribology Series 31 (1996), 33-37. (1996) DOI10.1016/S0167-8922(08)70767-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.