Displaying similar documents to “Completely regular spaces”

On the vanishing of Iwasawa invariants of absolutely abelian p-extensions

Gen Yamamoto (2000)

Acta Arithmetica

Similarity:

1. Introduction. Let p be a prime number and p the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, k a p -extension of k, k n the nth layer of k / k , and A n the p-Sylow subgroup of the ideal class group of k n . Iwasawa proved the following well-known theorem about the order A n of A n : Theorem A (Iwasawa). Let k / k be a p -extension and A n the p-Sylow subgroup of the ideal class group of k n , where k n is the n th layer of k / k . Then there exist integers λ = λ ( k / k ) 0 , μ = μ ( k / k ) 0 , ν = ν ( k / k ) , and n₀ ≥ 0...

Generalized linearly ordered spaces and weak pseudocompactness

Oleg Okunev, Angel Tamariz-Mascarúa (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is if X is either weakly pseudocompact or Lindelöf locally compact. We prove that if X is a generalized linearly ordered space, and either (i) each proper open interval in X is truly weakly pseudocompact, or (ii) X is paracompact and each point of X has a truly weakly pseudocompact neighborhood, then X is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].

Embedding of the ordinal segment [ 0 , ω 1 ] into continuous images of Valdivia compacta

Ondřej F. K. Kalenda (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment [ 0 , ω 1 ] . This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.